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Abstract

A definition of a utilitarian social welfare relation (SWR) for infinite utility streams is proposed. Such
a relation is characterized in terms of the Pareto, Anonymity and Partial Unit Comparability Axioms. The
merits of the utilitarian SWR, relative to the more restrictive SWR induced by the overtaking criterion, are
examined.
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1. Introduction

In comparing infinite utility streams, two guiding principles have generally been found to be
widely acceptable. If, like Ramsd£8], we would like to treat all generations equally, we have
to accept the Anonymity Axiont. If our intertemporal preference structure is to be (positively)

* The authors are grateful to Kuntal Banerjee, Wolfgang Buchholz and Jorgen Weibull for helpful suggestions on an
earlier version of the paper. The current version has benefited greatly from the comments by a referee and an associate
editor of the journal.
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1 Many authors have felt that a stronger notion than the Anonymity Axiom is needed to reflect intergenerational equity
in intertemporal preferences. However, there appears to be general agreement that any notion of intergenerational equity
in intertemporal preferences must include the Anonymity Axiom.
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sensitive to the well-being of each generation, we are led to impose the Pareto Axitosauld

be convenient if one could constructacial welfare functior(SWF) which respected both of
these principles, because then comparisons of infinite utility streams could be conveniently carried
out in terms of the social welfare numbers associated with the utility streams.

In fact, it would be futile to try to construct such a SWF, because it can be shown that there is
no SWF which respects both the Anonymity and the Pareto axioms. In other words, all Paretian
SWFs are necessarily inequitable.

This need not deter progress, however, because if one could consnatabwelfare ordering
(SWO) respecting the two axioms, we would be able to compare all infinite utility streams in terms
of this ordering. Svensson [33] was the first to show that such an ordering does exist. However, it
is worth noting that he obtains the ordering by non-constructive methods; specifically, he defines
a pre-order (a binary relation satisfying reflexivity and transitivity) satisfying the two axioms,
and then completes the order by appealing to Szpilrajn’s lethiiius, knowing that such an
ordering exists does not necessarily provide a clue as to how it might be constructed.

In view of this, we might consider lowering our demands further and be willing to asoel
welfare relation{SWRs) which ar@re-ordersthat allow (consistent) comparisons between only
some pairs of infinite utility streams but not othérsn this case, one can actually construct several
SWRs satisfying the Anonymity and Pareto Axioms. The Suppes-Sen grading prfheiptethe
pre-orders induced by the “overtaking” or “catching-up” criterioare examples of such SWRs.

One way to be selective among such SWRs is to impose an axiom ensuring some degree
of intertemporal comparability of utilities. In the context of intertemporal preferences, a partial
(cardinal) unit comparability axiom appears to be a natual comparability requirement to have.
If we do so, we obtain an interesting social welfare relation which compares only those infinite
utility streams which are “Pareto comparable” beyond a finite horizon, and which applies standard
utilitarian principles up to that finite horizon.

This utilitarian SWR satisfies the Anonymity, Pareto and Partial Unit Comparability axioms.

It turns out that it is thdeast restrictivepre-order which does sb.If any SWR satisfies the

2The Rawlsian SWF, which figures quite prominently in discussions on equity, violates the Pareto principle, even in
comparisons of utility streams where each utility stream has a well-defined minimum. For example, in compadng
x’, wherex; = x} = 0.4, andx, = 0.5+ (1/n) forn>2,x, = 0.5 forn >2,xis clearly Pareto-superior td, but since
min, > 1 x, = 0.4 =min, 1 x;,, the Rawlsian SWF would consider the utility sequences to be indifferent.

3while this impossibility result might sound familiar, it has actually been established only recently in Basu and Mitra
[6], without any domain restriction and without any other axiom imposed on preferences. The well-known impossibility
result of Diamond15] was established for a specific domain and, more importantly, with an additional continuity axiom
on preferences.

4 Recall that a standard way of proving Szpilrajn’s Lemma is by using Zorn’s Lemma, which is known to be equivalent
to the Axiom of Choice. See, for example, Fishb{t] for a proof of Szpilrajn’s Lemma.

5 pre-orders, incomplete though they may be, have turned out to be powerful tools. The use of the Lorenz pre-order
in studies of income inequality, and the pre-order induced by the overtaking criterion in optimal growth theory are two
well-known examples.

6The Grading Principle is due to Supd&g]. For a comprehensive analysis of it, see §4)j.

7 For the definitions of the SWRs appropriate to this discussion, see Séction

8To elaborate, if one identifies a binary relation with its graph, then th&;seepresenting the graph of the utilitarian
SWR is the smallest set (in terms of the partial orderphmong all sets representing graphs of SWRs which satisfy the
Anonymity, Pareto and Partial Unit Comparability Axioms. This is discussed fully in Se8tlbiThe SWRs induced by
the overtaking criterion (discussed in detail in Sectipsatisfy all three axioms, but they are clearly not the least restrictive
SWRs which do so. The Suppes-Sen grading principle is, of course, a less restrictive pre-order than the utilitarian SWR,
but it does not satisfy the Partial Unit Comparability axiom. This point is discussed in S8cZibalow.
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three axioms, then the utilitarian SWR isabrelationto it in the sense that the rankings of the
utilitarian SWR must always be respected by any such SWR. In this sense, the utilitarian SWR is
characterizecy the Anonymity, Pareto and Partial Unit Comparability axiofns.

We compare our utilitarian SWR with the SWRs induced by the overtaking or catching-up
criteria in Section 4. A noteworthy feature of our utilitarian SWR is that it is axiomatized without
postulating any continuity property on the pre-order in the infinite dimensional space containing
the set of utility streams. In contrast, axiomatic characterizations of the more restrictive SWRs
induced by the overtaking criterion typically involve some form of a continuity axt@m.

We argue that the rankings provided by our utilitarian SWR are more widely acceptable than the
rankings provided by the overtaking SWR. Of course, the overtaking (and more so the catching-
up) SWR provides rankings of two utility streams in many cases in which the utilitarian SWR finds
them non-comparable. That is, the utilitarian SWR is more incomplete than the overtaking SWR.
However, as an application of the utilitarian SWR, we establish, in the standard aggregative model
of optimal growth without discounting, the somewhat surprising result that this incompleteness
is not a handicap in characterizing dynamic optimal behavior, and the power of the overtaking (or
catching-up) SWR to rank a larger set of utility streams than the utilitarian SWR is found to be
completely superfluous.

2. Notation and definitions

Let N denote, as usual, the set of natural numigrg, 3, ...}, and letR denote the set of real
numbers. LeY denote the closed intervi, 1], and let the set N be denoted b¥X. Then,Xis the
domain of utility sequences that we are interested in. Henee(x1, x2, ...) € X ifand only if
xp €[0,1] foralln € N.

Fory,z € RN, we writey >z if y; >z; foralli € N; and, we writey > z if y>z, andy # z.

A SWR is a binary relation;, on X, which is reflexive and transitive (a pre-ordering) We
associate with; its symmetric and asymmetric components in the usual way. Thus, we write
x ~ y whenxzy and y~x both hold; and, we writec > y whenx~y holds, butyzx does
not hold. A SWO is a binary relatiory;, on X, which is completé? and transitive (a complete
pre-ordering).

A SWR -, is asubrelationto a SWR; if (a) x, y € X andx’ ,y impliesx’Zzy; and (b)
x,y € X andx >4 y impliesx >p y. A SWO -, is compatible witha SWR’_; if and only if
g is asubrelation tq; 4.

Givenx € X, andN € N, let us denote by (N) the vector consisting of the firtt elements
of x and byx[N] the sequence from tergV + 1) onwards. Sox(N) = (x1, x2, ..., xy) and
x[N] = (xy+1, XN+2, ...). The sequencexy, x2, ..., xy, 0,0, ...) is denoted byx(N), O[N]).
Given a vector (N), we usel (x(N)) to denote(x1 + - - - + xn).

9In the same sense, the Suppes-Sen grading principle is characterized by the Anonymity and Pareto Axioms. See the

discussion in Sectio8.2

10The study by BrocK9] uses a “consistency axiom” which, together with the independence axiom, actually implies
a continuity restriction on the underlying preferences. A more recent study by Asheim and Tun{@ddiso uses a
continuity axiom. This point is discussed in detail in Secdon

111n the economics literature, a pre-ordering is often referred to as a “partial ordering” or as a “quasi ordering”. However,
in the mathematics literature, the term “partial ordering” refers to a binary relation which is transitimetisyinmetric
To avoid confusion, we use the mathematical terminology, since the term “pre-order” is never used in any other sense in
either discipline. Incidentally, our usage coincides with the terminology introduced in DEl&eu

12since completeness implies reflexivity, a SWO is a SWR, which is complete.
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3. The utilitarian social welfare relation

In this section, we introduce a new definition ofilitarian SWR, and provide an axiomatic
characterization of it in terms of the Anonymity, Pareto and Partial Unit Comparability axioms.
We also relate our utilitarian SWR to the Suppes-Sen grading principle, which is characterized in
terms of the first two of these axioms.

Let us define a binary relation;, on X by:

xzZyy ifand only if there isN € N, such that
(I (x(N)), x[N]D) =2 (y(N)), y[ND). (1)

It is easy to check that;, is reflexive and transitive o, so it is a SWR. We will call this
SWRutilitarian. Note that the utilitarian SWR ranks only those infinite utility streams which are
“Pareto comparable” beyond a finite horizon, and applies standard utilitarian principles up to that
finite horizon.

The SWR;; satisfies the following two desirable properties:

@ If x,y e XandN € Nand(I(x(N)), x[N]) = (y(N)), y[N]) thenxZ;,y (2)
and
(b) If x,y e XandN € N and(I(x(N)), x[N]) > (I(y(N)), y[N]) thenx >y y. (3)
The SWRZ,; also satisfies what has been called the “independent future” condition:
If x,y,z e Xthenxz,yifand only if (z(N), x)Zy (z(N), y) for everyN e N.

This condition follows from postulates 3b and 4 in KoopmH®, and is explicitly stated in this
formin Fleurbaey and Michel [17]. Thus, the passage of time does not alter the preferences, given
a common history upto any point of time.

3.1. Axiomatic characterization of the utilitarian SWR

Our objective is to establish an axiomatic characterization of the utilitarian SWR. To this end,
consider the following two axioms on a SWR which are fairly straightforward, and therefore
require no explanation.

Axiom 1 (Paretg. If x,y € X, andx > y, thenx > y.

Axiom 2 (Anonymity. If x, y are inX, and there exist, j in N, such that; = y; andx; = y;,
while x; = yi for all k € N, such thak # i, j, thenx ~ y.

The next axiom is an adaptation to the infinite domain of the standard assumption of unit
interpersonal comparability used in social choice theory (see, for instanci813afiAspremont
and Gevers [12], Roberts [29] and Basu [5]), expressed as an invariance &kiom.

13 Maskin[22] uses the weaker “full comparability axiom” in which one demands invariance onlycimmanorchange
of origin and a common change of scale for all agents. He is able to characterize utilitarianism (in finite societies) by
using this “full comparability axiom” (instead of the stronger “unit comparability axiom” in d’Aspremont-G¢V2ts
by exploiting in addition a continuity axiom.
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Axiom 3 (Partial Unit Comparability. If x, y € X, o € RN andN e N satisfy:

x[N]=y[N] and xZy 4)
and

x+oeX, yt+oaeX ®)
then they must also satisfy:

x+ozy+o. (6)

Remarks. (i) The Unit Comparability axiom (on the infinite domain) asserts that preferences
are invariant to changes in the origins of the utility indices used in the various periods; it is also
invariant to a common change in the scale (by a positive factor) of the utility indices used in the
various periods. It would be formally stated as follows.

Unit comparability Leta, b,a’, b’ € X be such that there exists a sequence of real numbers
{a,} and a positive real numbgrsatisfying for alln € N,

a, = o, + fan; b, = o, + Pby. @)
Then,
azp if and only if a’'=b'. (8)

(i) Axiom 3 is weaker than the Unit Comparability axiom, since we insist on the invariance with
respect to changes in origin only in comparing utility streams in which the streams are identical
from a certain point onward¥

Itis fairly straightforward to check that if the utilitarian SWHR;; is a subrelation to a SWR,
thenz- must satisfy the Pareto, Anonymity and Partial Unit Comparability Axioms. What is not so
obvious is that i is any SWR satisfying these three axioms, then the utilitarian SyyRnust
be a subrelation tg. Essential to this complete characterization theorem is a technical lemma,
which should be of independent interest. This intermediate result provides a characterization of
the indifference classes (of SWRs satisfying the three axioms) on the subsebasisting of
utility streams with at most a finite number of non-zero entries.

Define:

X% = {x € X : x has at most a finite number of non-zero elements (9)

Note that forx € X9, the sum)_ 2, x, is well-defined; we denote it by(x). Forx € X%, the
decreasing rearrangementofs clearly also well-defined; we denote it By Definem(x) =
min{N € N : x, = Oforalln>N}.

Lemma 1. (i) Suppose a SWR satisfies Axiomg, 3.1f x, y € X% anda(x) = a(y), then
x ~ y. (ii) Suppose a SWR satisfies Axiom&-3.1f x, y € X% andx ~ y, thens(x) = a(y).

14This axiom has been used by Lauw{2] in his axiomatic characterization of discounted utilitarianism.

15\Weaker than the above partial unit comparability axiom isitidependencpostulate, introduced by Debr§l4] in
the finite-horizon context, and studied by Koopm§k8 and Koopmans et g20] in an infinite-horizon context, in their
studies on the representation of preferences by additively separable utility functions.
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The proof of LemmaA (i) (see Section 6) follows the method used by Milnor [24] in his axiomatic
characterization of the Laplace criterion in games against nature. This idea has also been used in
the context of social choice theory in characterizing utilitarianism in a society with a finite number
of agents by d’Aspremont and Gevers [12]. For finite agent societies, a diagrammatic exposition
of their result is provided in Blackorby et al. [7].

We now present our characterization result regarding the utilitarian SR

Theorem 1. The utilitarian SWRz;; is a subrelation to a SWR if and only if 2 satisfies
Axioms1-3.

Itis useful to view the above characterization result as saying that the utilitarian SWHeiaghe
restrictiveSWR among all SWRs satisfying the Pareto, Anonymity and Partial Unit Comparability
axioms. For this purpose, it is convenient to identify a binary relatiodaith its graph inx 2. 16

Denote byP (X?) the set of all subsets of2. Note that the binary relatioa (“subset of”) is
a pre-order orP (X?). If - is any binary relation oiX, its graph:

S(2) = {(x,y) € X*: x2y) (10)
is a subset ok 2, and consequently () is an element oP (X?).

We look at the subse® (X?) of P(X?) consisting of the graphs of those pre-orderawvhich

satisfy Axioms1-3. Formally,Q(X?) is the subset oP (X?), defined by

0(X?) = {S(=) € P(X?) : = is a pre-order orX satisfying Axioms 1-3. (11)
Using Theorend, we haveS(iZ;) € 0(X?), and if = is any pre-order oiX satisfying Axioms
1-3, thenS(Z;;) € S(2). Thus,S(zy) is a least element of(X?) in terms of the pre-order
.17 In this sense, the utilitarian SWR is the least restrictive pre-order satisfying Axioms 1-3.

It follows from this result that the graph &f;; is in fact the intersection of the graphs of all
pre-orders oiX satisfying Axioms 1-3. Let us define

s= (] S&. (12)
S(2)eQ(X?)

Then, by definition, we hav8 C S(x) for everyS(:o) € Q(X?). SinceS(z,) € 0(X?), we
haveS C S(Zy). On the other hand, sinc®(Z;;) is a least element of (X?) in terms of the
pre-orderc, we haveS(z,) C S(x) forall S(0) € 0(X?). That iS,S(2Zy) C S. Thus, we have

Szp=S= (] S&. (13)
S(2)eQ(X?)

3.2. Comparison with the grading principle

Recall that the Suppes-Semading principleis the binary relatiory-¢ defined® on X as
follows:

xZgy ifand only if there is a finite permutationof N, such thatc(z) > y.

16 Recall that a binary relation is oftefefinedprecisely by specifying its graph.

17\We use here the standard mathematical definition of a “least element” of a set, given a pre-order on that set. See, for
example, Debre{l3, p.8]

18This formal definition of the Suppes-Sen grading principle in the context of infinite utility streams is due to Svensson
[33].
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It can be characterized as the least restrictive SWR satisfying the Pareto and Anonymity axioms;
see d’Aspremonitl1] and Asheim et al. [1].

Proposition 1. A binary relation’Z on X satisfies Axiom$ and 2 if and only if the grading
principle 2 ¢ is a subrelation taz.

The grading principle does not satisfy the partial unit comparability axiom, as can be seen
from the following example. Let = (0.5,0.4,0.1,0.1,...) andy = (0.3,0.8,0.1,0.1, .. .).
Then,x andy are non-comparable by the Suppes-Sen grading principle, since there is no finite
permutation ok which is >y, and there is no finite permutation pfvhich is > x. However, if
we increase the utility origin of the first period by 0.1, and reduce the utility origin in the second
period by 0.1, we obtain the vectors= (0.6, 0.3,0.1,0.1, ...) andy = (0.4,0.7,0.1,0.1, .. .).

Now, permuting the first two periods of the vecigrand denoting the resulting vector Byr),
we see thay(n) > x, so thaty is preferred toc according to the Suppes-Sen grading principle.
Thus, the Suppes-Sen grading principle violates the partial unit comparability axiom.

The characterizations of the grading principle and the utilitarian SWR allow us to obtain a
SWO (a complete pre-order) compatible with the utilitarian SWR, which satisfies Anonymity and
the Pareto axioms. Since the binary relatigp satisfies the Anonymity and Pareto axioms (by
Theorem 1), the grading Principfes is clearly a subrelation tg;, (by Proposition 1). Thus, by
Theorem 2 of Svensson [33, p.1253], there is a complete pre-grdempatible with=;;, which
satisfies the Pareto and Anonymity Axioms.

4. The overtaking criterion SWRs

The standard method of comparing utility streams in infinite-horizon intertemporal allocation
models, while respecting the equal treatment of all generations, is by employing the overtaking
criterion. The resulting pre-order is a generalization of the one used by Ramsey [28], and was pro-
posed independently by Atsumi [3] and von Weizsacker [34] in their studies on optimal economic
growth.

It would be useful to discuss the merits of our (less restrictive) utilitarian SWR with the (more
restrictive) overtaking SWR$? For this purpose, it would be convenient to have axiomatic
characterizations of the overtaking SWRs which are directly comparable to our characterization
of the utilitarian SWR. Unfortunately, the characterizations of the overtaking SWRs provided by
Brock [9] and more recently by Asheim and Tungodden [2] use axiom sets which make such a
direct comparison difficul® In this section, we provide an axiomatic characterization of the
overtaking SWRs, which will facilitate such a comparison.

We will show that the overtaking SWRs can be characterized in terms of Axioms 1-3 and an
additional “consistency” axiom. This consistency axiom is similar in spirit to Axiom 3 used by
Brock [9], who says that it “captures the notion that decisions on infinite programs are consistent
with decisions on finite programs of lengthf n is large enough.”

The partial unit comparability axiom together with the consistency axiom imply a continuity
requirement on the SWR, similar to that used by Asheim and Tungodden [2] in their axiomatic

19 A more appropriate way to describe them would be “the SWRs induced by the overtaking criterion and the catching-up
criterion”. The precise definitions are given in Sectibf

201 particular, neither of these papers uses the partial unit comparability axiom directly.
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characterization of the overtaking SWR5.Thus, in terms of the axiomatics, the difference
between the overtaking SWRs and our utilitarian SWR can be traced to imposing or notimposing a
continuity requirement on preferences. In thisregard, the currentwork can be seen as a continuation
of the study in Basu and Mitra [6], where we deliberately refrained from imposing any continuity
axiom. Axioms on the continuity of preferences in infinite-dimensional spaces have been the most
controversial in the literature in this area, since the topology in which such continuity is assumed
determines to a large extent the nature of allowable preferences. These restrictions arise largely
from mathematical necessity and do not necessarily reflect any underlying ethical or economic
principle.

4.1. Axiomatic characterization of the overtaking SWRs

There are two definitions of the overtaking criterion commonly in use. We will define each in
turn and provide their axiomatic characterizations. Let us défireebinary relatiori; on X by

x> cy if and only if there isN € N, such that
T(x(N))>I(y(N))forall N>N. (14)

It is easy to check that - is reflexive and transitive o, so it is a SWR. We will call it the
catching upSWR.
The SWRZ satisfies the following two properties:

@ If x,y e XandN e N andI (x(N))>1(y(N))
forall N> N, thenx.y (15)

and

(b) If x, y € X andN e N andI (x(N))>1(y(N))
forall N>N, andl(x(N)) > I(y(N))
for a subsequence of > N, thenx >c y. (16)

We can obtain an axiomatic characterization of the catching up SWR in terms of Agiedns
of the previous section, and an additiosaibng consistencgxiom, which we now state.
Axiom 4 (Strong consistengy Forx, y € X,

(@) Ifthere isN e N, such thaitx(N), O[N])>=(y(N), O[N])
forall N> N, thenx-y (17a)

(b) If thereisN e N, such thaix(N), O[N])=(y(N), O[N])
forall N >N, with (x(N), O[N]) > (y(N), O[N]
for a subsequence & > N, thenx > y (17b)

The characterization result can be stated and proved as follows.

21This is discussed in detail in the discussion following Theor2rasd3.
22This definition is used by Svenss{88].
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Theorem 2. A SWR satisfies Axiom&—4if and only if- - is a subrelation tgz.

Remark. Asheim and Tungodden [2] use a “Strong Preference Continuity” axiom in their char-
acterization of the catching up SWR. This axiom is stated as follows.

Strong preference continuitupposer, y € X andN e N, satisfy:

(y(N), x[NDZ(x(N), x[N]) forall N>N (Ca)
and:

(y(N), x[N]) = (x(N), x[N]) forasubsequence &f >N (Chb)
theny > x.

This axiom is implied by Axiom8 and 4. Using Axiom 3 and (Ca), (Cb), we have
(y(N), OINDZ(x(N),O[N]) forall N >N (18)
and:
(y(N),O[N]) > (x(N),0[N]) fora subsequence & >N (29)

Thus, by Axiom4, we obtainy > x.

To see that this is indeed a strong continuity requirement, define the sequence of infinite utility
streamsz® = (y(s), x[s]) for eachs € N. Then, we see that is the (pointwise) limit ofz*
ass — oo. Thus, the axiom says that if =—x for all s sufficiently large, withz® > x for a
subsequence af, then the pointwise limit o (namely,y) > x. Quite apart from the fact that
preferences cannot be reversed in the limit, this in fact demands that strict preference prevail in
the limit.23

The alternative version of the overtaking criterfdrcan be formalized as follows. Let us define
the binary relatiori;, by

xZ oy ifand only if
either(i)3 N € N, such that/ (x(N)) > I(y(N)) forall N>N
or (i) AN e N, such thatl (x(N)) = I(y(N)) forall N>N. (20)
It is easy to check that, is reflexive and transitive o, so it is a SWR. We will call it the
overtakingSWR.
It can be verified that the SWR, satisfies the following two properties:
(@) x > yifand only if there isN € N,
such that! (x(N)) > I (y(N)) forall N> N (21)

and

(b) x ~¢ yifand only if there isN e N,
such thatl (x(N)) = I(y(N)) forall N> N. (22)

23 Asheim and Tungoddd@] use the word “strong” here because strict preference in the limitis based on strict preference
holding only along a subsequencesoBut, clearly, this continuity requirement is very strong for other reasons as well.

24This is the version used by Atsurfd], von Weizsackef34] and Brock{9].
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It follows that
Dx>=oy=x>cy;, ()x~py=x~cy. (23)

We can obtain an axiomatic characterization of the strong overtaking SWR in terms of Axioms
1-3 of the previous section, and an additiowabk consistencgxiom, which we now state.

Axiom 5 (Weak consistengy Forx, y € X,

(@) Ifthere isN e N, such thatx(N), O[N]) ~ (y(N), O[N])
forall N>N, thenx ~y (24a)

(b) If there isN € N, such thaix(N), O[N]) > (y(N), O[N1)
forall N>N, thenx > y. (24b)

The characterization result for the overtaking SWR can be stated as follows. The proof, which
is similar to the proof of Theorerd, is omitted.

Theorem 3. A SWR satisfies Axiom&—-3and5 if and only ifZ, is a subrelation tgz.

Remark. Asheim and Tungodden [2] use a “Weak Preference Continuity” axiom in their char-
acterization of the overtaking SWR. This axiom is stated as follows.

Weak preference continuitupposer, y € X andN e N, satisfy:
(y(N), x[N]) = (x(N),x[N]) forall N>N (Cw)

theny > x.
This axiom is implied by Axiom8 and 5. Using Axiom 3 and (Cw), we have

(y(N), O[N])Z(x(N),O[N]) forall N>N.
Further
(x(N), OINDZ(y(N), O[N])
cannot hold for any > N. For if it did hold for someV > N, then by Axiom3, we would get
(x(N), xINDZ(y(N), x[N])
for that N. But, this would contradictGw). Thus, we have
(y(N),O[N]) > (x(N),0[N]) forall N>N

and, by Axiom5, we obtainy > x.

Define the sequence of infinite utility streamis= (y(s), x[s]) for eachs € N. Then, we
see thay is the (pointwise) limit ofz* ass — oo. Thus, the axiom says thatif >~ x for all s
sufficiently large, then the pointwise limit @f (namely,y) > x.

A corollary of the characterization results on the utilitarian and the overtaking SWRs (Theorems
1-3), which is useful for our discussion in Sections 4.2 and 5, can be stated as follows.
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Corollary 1. The utilitarian SWRz;; is a subrelation to the overtaking SWR,, which in turn
is a subrelation to the catching up SWR-.

4.2. The utilitarian SWR versus the overtaking SWRs

We find the ranking of utility streams according to the utilitarian SWR to be persuasive. Consider
a situation in which faced with a choice betweeandy, one finds that there is som¥¢ € N,
such that

(I(x(N"), x[N']) > (I(y(N"), y[N']).
Then one can findV > N’ such that
I(x(N)) > I(y(N)) and x[N]=y[N].

Thus, one may consider getting together the members of the finite s¢tiety, N}, and asking
them to rankx versusy. If they apply utilitarian principles to themselves, they will rankbove
y. Inthis case, itis legitimate for thefinite-horizon societyo rankx abovey because the infinite
number of future generations, who aretincluded in the finite societyl, ..., N}, are either
indifferent betweemx andy or preferxto y. In other words, in this situation, all future generations
beyondN are willing to go along with the (utilitarian) preferences of the finite sodigty. ., N}.

No such consensus is to be obtained with the overtaking SWR. Consider the following example
of two utility streams, where the overtaking SWR can compare the two streams and the utilitarian
SWR declares them non-comparable.

x=(020 01,0, 010 ..),
y=(, 01,0, 01,0 01, ...).

We can verify that foV = 1,
I(x(N) > I(y(N)) forall N>N

so thatx > y according to the overtaking SWR.

The question arises whetheshouldbe preferred ty by the infinite horizon society. This is
not altogether clear. The problem with judging- y in such a case can be seen as follows. If we
look at any finite-horizon society, and ask the society to ramkrsusy, they will indeed rank
x higher thany, if they apply utilitarian principles to themselves. However, no matter how large
the finite-horizon, there are always ifinite number of future generations who raxkelow y.

Thus, it is never possible to have consensus of opinion between any finite-horizon society and the
infinite number of future generations not included in that finite society.

A comparison of the utilitarian SWR with the overtaking or catching-up SWR can also be
made from a somewhat different perspective. Recall that the need to construct such SWRs arises
because SWFs satisfying Pareto and Anonymity axioms do not exist (and no SWO satisfying
the two axioms has been constructed). If one discounted future utilities one could get a SWF

Bitis possible to use an extended notion of Anonymity, which does not conflict with the Pareto principle, which makes
comparisons of utility streams, of the sort described in the example, possible. Such an extended notion of Anonymity
leads to an extended grading principle and an extended utilitarian SWR, which are more complete SWRs than the grading
principle and the utilitarian SWR (respectively) discussed in this paper. For results along these lines, see the recent papers
by Mitra and Basu26] and Banerje@4].
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(in our setting) by simply summing up the discounted stream of utilities. The Pareto Axiom
would be satisfied but the Anonymity axiom would, of course, be violated. Loosely speaking,
this violation could be considered to be “small” for discount factors close to 1. Thus, one way
of checking for robustness of a SWR, satisfying Anonymity and the Pareto axioms, would be to
see whether the ranking between two alternativasdy provided by the SWR is preserved for
discount factors close to 1 in the discounted present value $WF.

Note that ifx is preferred toy according to the utilitarian SWR, then there is some= N,
such that’ (x(N)) > I(y(N)) andx[N]> y[N]. Thus, there is a discount factore (0, 1), such
that for all§ e (3, 1), we would have

N N
Z " x(n) > 25"_1)1(11) and 5"_1x(n)25"_1y(n) forn>N + 1.

n=1 n=1

Consequently, forall € (S, 1), we would havef (x; 0) > f(y; 0), wheref (-, o) isthe discounted
present value SWF, corresponding to the discount fattor

The overtaking SWR doe®ot have this robustness property, and we show this by presenting
a concrete example of two utility stream@ndy, such thai is preferred toy according to the
overtaking SWR, but is preferred toc according to the discounted present value Sérffevery
5e(0,1).%

Definex andy as follows:

x=(0, 05+a, a2, a3, at, a°, ),
y = (0.5, 0, a, a2, a3, a*, ),

wherea = (1/8). Denotingl (y(N)) — I (x(N)) by Ay, we see that

A1 =05 Ay=—-d""1 forallN>2. (25)
Clearly then we have

I(x(N)) > I(y(N)) forall N>2

and consequently >¢ y.
We now claim that for the above example, forak (0, 1),

fao)=)"""txm) <Y " ym) = £(3.0). (26)
n=1

n=1
Suppose, on the contrary, there is same (0, 1), such that
fx,0)=f(y,0). (27)

Given thiss € (0, 1), denote(1 — 9)/2 by f; thenp > 0. We can choos# € N large enough so
that

SN (1 - 8)<(B/2). (28)

26This robustness check was suggested to us by Jorgen Weibull.

27 Although the overtaking criterion has been discussed at length in the literature, we are not aware of any paper which
presents such an example.
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Using @8), note that for allv > N, we have
00 0 B
Y I Yo t=6"/- 9 <o /M- 9)<(B/2).
n=N+1 n=N+1

Using 27) and (29), note that for aN > N, we have
N 00

Z " x(n) = Z " x(n) — Z " x(n)
n=1 n=1 n=N+1

=f(,0)— Y, & xm)
n=N+1

= f(y,0) —(B/2)
N
> 8y — (B/2).
n=1
Thus, for allN > N, we obtain

N N

D5y =) )< (B/2).

n=1 n=1

Using 25), we now write for allv € N,

N
> Hym) —x(m) = A1+ (A2 — AD)d+ -+ (Ay — Ay !
n=1
=A11 =8+ -+ Ay_18V2A = 5) + ANt
= 0.5(1— 8) — (1 — 8)[da + 6°a?
4ot 5N_261N_2] _ 5N—laN—l
o0
>051-8)—(1-08)) &a"—sNta"t
n=1
=0.5(1—-90) — (1 —9)[da/(1— da)]
_5NflaN—l.
We have

[0a/(1—da)]<[a/(1—a)] = (1/7)
and using this information irB(L), we obtain for allv € N,
N
D TR m) — x(m) > (5/14 (L - 9) — 3" a
n=1
Combining B0) and (32), we obtain for alV > N,

(1—0)/4=(B/2)=>(5/14 (1 - ) — oV LoV 1.
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(29)

(30)

(31)

(32)
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This means that for alv > N, we have
N LN 1> (3/28) (1 - 6). (33)

Note that the right-hand side d3) is a positive constant (sinée= (0, 1) is given) independent
of N. The left-hand side of (33) depends & and goes to zero @€ — oo. This contradiction
establishes our claim (26). Thatyss preferred toc according to the present discounted value
SWEF for everyd € (0, 1).

In fact, for this example, the sum&x, ) and f(y, ) exist even ford = 1, and it is easy to
check that

o0 o0

feD=) xm=) ym=f1

n=1 n=1

so that, according to utilitarian principles, certainly one should dealdcebe indifferent toy,
but as we have noted aboveis strictly preferred to according to the overtaking criterioff.

5. An application to optimal growth theory

We have argued above that Axioms 4 or 5 are not as readily acceptable as Axioms 1-3; in other
words, we find the overtaking and catching-up SWRs less persuasive than the utilitarian SWR.
Nevertheless, almost all of the theory of optimal intertemporal allocation, in which generations
are treated equally in its preference structure, uses some form of the overtaking or catching up
SWR, and therefore accepts Axiom 4 or 5 (in addition to Axioms 1-3). The reason for this is
that even though Axiom 4 (or 5) is not an obvious axiom to accept, it gives sufficient structure
to intertemporal preferences so that the theory of optimal intertemporal allocation has some
predictive power: a path which is optimal according to this pre-ordering in the typical intertemporal
model is unique, and the nature of such an optimal path can be described quite accurately, both
in terms of short-run characteristics (tRamsey—Euleor competitiveconditions), and long-run
behavior (theurnpikeproperty).

The presumption appears to be that if we wanted to proceed with intertemporal preferences
satisfying only Axioms 1-3 (that isyithoutimposing something like Axiom 4 or 5), we would
not have a useful theory of optimal behavior over time. Since the utilitarian SWR is less complete,
it would allow less comparisons of intertemporal paths, and consequently there could be many
maximal points according to the utilitarian SWR. However, this issue has not been explored in
the literature, and therefore such misgivings about a theory based solely on the utilitarian SWR
might be premature.

We will establish in this section the rather surprising result that in the standard neoclassical
model of optimal growth without discounting,maximal path according to the utilitarian SWR
is in fact unique and it overtakes all other paths starting from the same initial condifiois
shows that the additional power of comparison, gained by using the overtaking SWR or catching
up SWR, is redundant in this contesd.

28\\e owe this remark to Wolfgang Buchholz.

291t s of interest to enquire whether this result generalizes to optimal growth models with heterogenous capital goods.
While this general question has not been settled, M&E has shown that, in a model of forestry (which is a specific
instance of a model with heterogenous capital goods), the result holds.
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We begin by describing the standard one-good model of optimal growth, where future utilities
are not discounted relative to the present. The framework is described by a pair of fuagtions
wheref is the production function andthe utility function.

The production functionf : Ry — R, will be supposed to satisfy the following assumptions:

(F.1) f(0) = 0,fisincreasing, continuous and concavefon
(F.2) fis twice continuously differentiable dR, ., with f’(k) > 0 andf" (k) < O fork > O.
(F.3) lim_ol £(k)/k] > 1 and lim_ ool £ (k) /K] < 1.

The utility function,u : Ry — R will be supposed to satisfy the following assumptions:

(U.1) uis increasing, continuous and concaveibn
(U.2) uis twice continuously differentiable dR. , with u’(c) > 0 andu (c) < 0 forc > O.
(U.3) u/(c) = oo asc — 0.

It can be shown that there exist uniquely determined numbarslk such that O< k < k <
o0, and f(k) = k, f'(k) = 1. We refer tok as themaximum sustainable stoekd tok as the
golden-rule stock

A feasible patHrom k >0 is a sequence @fapital stockgk;} satisfying:

ko=k, O<ki11< f(ks) fort>0.
Associated with the feasible patk } from k is aconsumptiorsequencéc;, }, defined by
¢t = fki—1) —k; forer>=1
and autility sequencéx;}, defined by
xr =u(c;) forr>1.
It is easy to show that for every feasible pé&th} from k >0, we have
ke<M(k) fort>0; ¢, <M(k) forr>1, (34)

where ma*lE,lc} = M (k). We will confine our discussion to feasible paths starting from initial
stocksk € [0, k]. Then, sincéM (k) = k, it follows that for every feasible patl, } fromk < [0, k],
we have

k<k fort>0; c¢;<k forr>1 x,<u(k) fort>1.

Thus, utility sequences associated with feasible paths fram[0, k] belong toX = [0, 1]V,
as in our framework of Sectio®, if we normalizeu(0) = 0 andu(k) = 1. (Note that such a
normalization does not change the ranking of feasible paths according to the utilitarian, catching-
up or overtaking SWRs.)

We will say that a feasible patlt;} from &, is maximalif there is no feasible pattk;} fromk,
such that

x' =y x

That is, in terms of the pre-order;;, the utility sequencéx,} associated with the feasible path
{k;} from k, is amaximal elemeramong all sequencds;} associated with feasible patfig}
from k. 30

30 Using the result of Brock8], one can infer that there exists a maximal path in our framework.
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Note thatz;; is a pre-order which allows us to compare fewer utility sequences than the catching
up pre-ordei - or the overtaking pre-order ,. Nevertheless, we will show that a maximal path
actually has a very strong property: it overtakes every other feasible path starting from the same
initial stock. That is, if the feasible patft,} from k, is maximal, then for every other feasible
path{k;} from k,, we have

x>0 x

so that{x,} is in fact thegreatest elemenin terms of the strict overtaking pre-ordep, among

all sequencefy;} associated with feasible patfig} from k,. Thus, the pre-ordet,; is sufficient

for a completely satisfactory theory of optimal growth, making the additional (often dubious)
comparisons, made possible by the catching-up or overtaking pre-orders, quite superfluous.

Theorem 4. Let {k,;} be any maximal path frork, € (0, k], in the aggregative neoclassical
mode] with associated utility sequen¢g}. Then

X >0 x,
where{x/} is the utility sequence associated with any other feasible fidjtfromk,.

The proof of this result (presented in the next section) is fairly long and involved, so we provide
here the basic logic of it.

A maximal element of our utilitarian SWR has two features. First, given an arbifirsitg
horizon if a maximal path is compared with any other path, which is identical to the maximal path
beyond this finite horizon, then the sum of utilities over the finite horizon must be maximized at
the maximal path. This yields the information (in the neoclassical growth model) that the maximal
path must satisfy thRamsey—Euler conditioffier all time, being simply the first-order conditions
of the appropriate maximization problem. Second, the maximal path cannot be Pareto dominated
by any other path, so that the maximal path mustffieientin terms of the consumption sequence
(generating the utility sequence), since the utility function is increasing. These two features imply,
by a beautiful characterization result of BrogdQ], that there is no path which can overtake a
maximal path by a positive finite amoupt. This is Step 1 in the proof, and it is where one can see
clearly how the two features of the utilitarian SWR are used. (The first step applies to all growth
models for which Brock’s characterization result is valid, and this is a larger class of models than
is considered here, including in particular, models with changing technology over time.)

To infer from this result that a maximal path in fact overtakes every other path (starting from the
same initial conditions) takes a considerable amount of additional work; specifically, it involves
seeing the full implications of the result (obtained in Step 1) for the particular growth model
examined here. The line of argument followed here crucially uses the stationary structure of
the growth model, and the strict concavity of the production and utility functions, and can be
conveniently subdivided into two parts.

The first part (Steps 2—6 in the proof) derive@symptoticproperties of paths which are not
“infinitely worse” (in terms of the sum of utilities) than a particular stationary path called a
golden-rule pathThese paths are callgdod and their long-run properties can be derived solely
by using the (stationary) shadow-prices associated with the golden-rule path, a method principally

31 paths which have this feature are called “weakly maximal” by Bi8¢k0]. We deliberately refrain from using this
terminology in this paper to avoid confusion.
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due to BrocK8]. The idea then is to note that a maximal path is necessarily good, and therefore
has precisely all the “right” long-run properties, that a path which was optimal according to the
usual overtaking (or catching-up) criteria would have.

This still leaves open the possibility that a maximal path might misallocate resources over
time in transition compared to a path which was optimal according to the usual overtaking (or
catching-up) criteria. The second part (Step 7) of the argument can be seen to demonstrate that
this possibility can be ruled out, by following a method that is essentially due to Gale [18]. This is
accomplished by using the Ramsey—Euler equations to provide a (typically non-stationary) price
support for the maximal path itself, and then exploiting the long-run propertisgdod paths
to conclude that any deviation from the maximal path leads to a loss, in terms of the sum of utilities
over a certain finite horizon, which can never be recovered in the future beyond that horizon.

6. Proofs

Proof of Lemma 1. (i) Let m = max{m(x), m(y)}. Then, forn >m, we havet, = 3, = 0. We
prove the result by induction on. Form = 1, we haver = y = 0, and the result is trivially true.
Suppose, next, that the result is truedoe 1, ..., M, whereM € N. We want to prove that the
result is true fom = M + 1.

Supposex, y € X such that majn(x), m(y)} = M + 1. If X = 3, thenx ~ y by the
Anonymity Axiom. So, we need only consider the case in whick 3. Then, there exist some
i,j € {1,..., M}, such thatt; > J; andx; < y;. Definea, = min{x,, y,}, x;, = X, — o
andy’ = 9, — a, for all n € N. Notice thatx’, y’ € X°, andx’ <%, while y’ <§. Further, we
haves(x’) = a(y’). Also, y/ = 0, andx} = 0; furthermoreyx,, = y, = Oforalln>M + 1.

It follows thatm(x") <M andm(y’) < M; consequently max:(x’), m(3")} <M. Thus by the
induction hypothesist’ ~ y’, and by the Anonymity axiom, we must have~ y’. Now, using
the Partial Unit Comparability axiom, we get~ y. The Anonymity Axiom can now be employed
again to conclude that ~ y. This completes the proof of (i) by induction.

(i) Suppose, on the contrary, there exisy € X9 satisfyingx ~ y, bute(x) # o(y). Without
loss of generality, we may suppose thét) > a(y); denote[a(x) — a(y)] by d. Clearly, there
existsN € N, such that; = y; = O foralli > N. Then, we have &< d < N. Definex’ e RN
as follows:

X =y fori=1,...,N,
x;=(/N)fori=N+1...,2N,
x'=0 for i > 2N.

Clearly,x’ € X andx’ > y, so by the Pareto axiom; > y. It is also clear that’ € X°, and
a(x") = 6(y) +d = a(x). Thus, by part (i) of the Lemma, we havé ~ x. Sincex ~ y, we
must havex’ ~ y, a contradiction, which establishes (ii){J

Proof of Theorem 1. NecessitySuppose the utilitarian SWR, is a subrelation to a SWR.
We need to verify that satisfies Axiomsl-3. To verify that— satisfies the Pareto axiom, let
x,y € X, such that there is somee N for whichx; > y;, while x; >y, for all k # j. Then,
clearly, we havel (x(j)), x[j1 > (I(y(j)), y[j1., sox >y y by (3). Sincez; is a subrelation
to 7z, we havex > y. To verify that> satisfies the Anonymity axiom, let y € X, andi, j € N
be suchthat; = y; andx; = y;, whilex, = y, forall k € N, such thak # i, j. Then, defining
N = max{i, j}, we have(I (x(N)), x[N]) = (I(y(N)), y[N]), so thatxzZ,;y andyzZ,x by (2).
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Since;;, is a subrelation tg;, we havexJy andyz-x. Thus,x ~ y, as required. To verify the
Partial Unit Comparability axiom, let, y € X, « € RY andN e N satisfy

(x(N), x[NDZ(y(N), x[N]) (35)
and
(x(N),x[N) +ae X, GW),x[N)+aelX. (36)

We claimthat’ (x(N)) > I (y(N)). Forif I(x(N)) < I(y(N)), thenby B8), we havay(N), x[N])
>y (x(N),x[N]). Sincez; is a subrelation to;, we must then hav&y(N), x[N]) >
(x(N), x[N1]), a contradiction to (35), which establishes our claim. Thus, we have

I(x(N)+a(N)) = 1(x(N)) + 1(N) =1 ((N)) + 1(a(N)) = I(y(N) +a(N)) (37)
and
(I (x(N) +o(N)), x[N]+a[ND =T (y(N) + a(N)), x[N]+a[N]) (38)

so that(x(N) + a(N), x[N]+ [Nz, (y(N) + «(N), x[N]+ «[N]) by (2) and (36). Since;,
is a subrelation tgr, we have(x (N) +a(N), x[N1+ o[N])Z(y(N) + o(N), x[N]+«[N]). Thus
(6) is satisfied, and the Partial Unit Comparability axiom is verified.

SufficiencySuppose a SWR; satisfies Axioms 1-3. We want to show tlig} is a subrelation
to 7. To this end, lek, y € X, and suppose >y y. Then, by (1), there is som€’ € N, such
that(Z (x(N")), x[N']) > (I(y(N")), y[N']). So, there iV > N’ such that

I(x(N) > I(y(N) and x[N])>y[N])
We want to prove that > y. Denote[l (x(N)) — I (y(N))] by d; thend > 0. Define
di=@Q—-y)d/[N—1(y(N))] fori=1,...,N.

Note that 0<d; < (L — y;) fori = 1,..., N, andY ", d; = d. Now, definex’, y',x",y" as
follows: x" = (x(N), yIND), y' = (n1 +d1 ----- YN +dn, y[N]) X' = (x(N), O[N], ¥ =
(1+da, ..., yy +dy, OIN]). Clearly,x’, y' € X andx”, y" € XO.

Note thato(x") = o(y"), since

Z (i +di) = Z vi+d= Z Vi + L (x(N)) = I (y(N))] = I (x(N)). (39)

Using 39) and Lemma 1, we must have ~ y’. Using the partial unit comparability axiom,
it follows thatx’ ~ y’. By the Pareto Axiom, we obtaif' > y, andx=x’. Thus, we must have
x > y by transitivity of .

Now, letx, y € X, and suppose’;;;y. Then, by (1), there is som¥ < N, such that

(I(x(N)), x[N]) = (y(N)), y[N]).

We want to prove that~y. Ifin fact we have(l (x(N)), x[N]) > (I (y(N)), y[N]), thenx >y y,
so thatr > y must hold, as proved above, and we are done. So, we are left with the case in which
(I(x(N)),x[N]) = (I(y(N)), y[N]). In this case, defing, y as follows:x = (x(N), O[N]),
j = (y(N),O[N]). Clearly,%, 7 € X9. Sincel(x(N)) = I(y(N)), we haves(x) = a(3)
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and by Lemmal, x ~ y. Sincex[N] = y[N], the partial unit comparability axiom implies
thatx ~y. 0O

Proof of Theorem 2. (i) Suppose a SWR; satisfies Axioms 1-4. Let,y € X andxZcy
Then, by (14), there i/ € N such that

I(x(N))=>1(y(N)) forall N>N. (40)

Using @0) and (2), we getx(N), O[N 1), (y(N), O[N]) for all N > N. Thus, for eaciv > N,
we have(x(N), O[N] = (y(N), O[N]) by using Theorem 1. Using Axiom 4(a), it follows that
x7y.

Next, letx, y € X andx >¢ y. Then,xZy holds, buty:z~x does not hold. Using -y,
there isN e N such that (40) holds; further (40) must hold with strict inequality for a sub-
sequenceV® of N, otherwisey-~x would also hold. Thus, using (2) and (3), we must have
(x(N), OIND =y (y(N), O[N]) for all N >N, with (x(N*), O[N*]) >y (y(N*), O[N*]) for the
subsequenc&v®. Consequently, we havex(N), O[N])>-(y(N), O[N]) for eachN >N, with
(x(N), O[N]) > (y(N), O[N]) for the subsequend€®. Using Axiom 4(b), it follows that > y.

(if) Suppose that the SWR - is a subrelation to a SWR. It can be verified, by following
the method used in the proof of Theorem 1, that the S¥Y\$tisfies Axioms 1-3. We now check
Axiom 4 as follows.

(a) Suppose, y € X andthereisv € N, suchthatx(N), O[N])=(y(N), O[N]) forall N > N.
Pick anyN > N. We claim that

IT(x(N))ZI(y(N)). (41)

For if (19) is violated, theriy(N), O[N]) =y (x(N), O[N]) by (3). Using Theorem 1, we obtain
(y(N),O[N]) = (x(N), O[N], a contradiction. This establishes our claim (41). Using (41) and
(15), we getrZ~y, and sincez is a subrelation tg, we getrZy. This verifies Axiom 4(a).

(b) Supposer, y € X and there iSN e N, such that(x(N), O[NDZ(y(N), O[N] for all
N >N, with (x(N*), O[N*]) > (y(N*), O[N*]) for a subsequende® of N > N. Pick anyN > N.
We can use the method used above to verify Axiom 4(a), to obtain (41), with strict inequality in
(41) holding for the subsequensg of N. By (16),x >¢ y holds and since; - is a subrelation
to 7z, we obtainx > y, verifying Axiom 4(b).

Proof of Theorem 4. Our proof relies on the methods used in optimal growth thédrgnd it
proceeds in a number of step$,which we now describe.

Stepl: Let {k,} be any maximal path from, € (0, k]. Then, using (F.1) and (U.3), itis a
standard exercise to check tiat> 0 and¢, > O forz > 1. Further, for each> 1, k; must solve
the following maximization problem:

Max  ulf (ki—1) — k] + ul f (k) — ki11]
st 0<k< flk—1)
and £ (k) >kit1.

32\e rely here especially on the methods developed, for general models of intertemporal allocation, [\8fzale
McKenzie[23] and Brock[8].

33S0me of the steps are very well-known in the literature, and are mentioned without further elaboration, to save space.
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Sincec, > 0 and¢;1 > 0, the solution is an interior one, and so the following first-order
condition must hold

u'(¢) = u' (G40 f (k) fore>1. (42)

Thus,{k,} is aRamsey—Euler path
Define the price sequen¢g;} by

pr=u'(¢;) fort =1, po=u'(c1)f (ko). (43)

Then, using the concavity and differentiabilityfadindu, it is easy to check that far>0

Pri1f (k) — prke > pryaf (k) — pk - for all k>0, (44)
u(cy) — pic 2u(c) — pe forall ¢=0.

That is, {k,} is acompetitive pathSince{k,} is a maximal path, and is increasing, there is no
path{k,} from k, satisfying

c¢;=¢ forall r>1, and ¢, > ¢ for somer>1.

Thus, {k;} is anefficient pathand by the result of BrocKL0], we have
T
lim _inf X; [u(c)) — u(é)]<0 (45)
1=

for every feasible patfk;} from k,.

Step2: Given the golden-rule stodk define¢ = (k) — k; it is easy to check that > 0. We
now come to a key concept in our demonstration, thatgzf@d pathA feasible pathk,} is called
goodif there isG € RandN e N such that

T
Z [u(c;) —u(@]>G forall T > N. (46)
=1

It can be verified that there is a feasible path from k, and N € N such that, = k for all
t>N,and sa, 1 = ¢ forall > N. This is clearly a good path frof,.

Step3: Next, define the golden-rule prige= u’(¢). Then, using the concavity and differen-
tiability of f andu, it can be verified that

Ik — pk=pfk) — pk forall k>0, 47)
u(¢) — pczu(c) — pc forallc>0.

DefineQ = {(k, k) € Ri . K< f(k)} and a felicity functionw : Q — R by w(k, k') =
u(f (k) — k). Then the condition47) can be combined to yield foe=0

wk, ky=wk, k') + pk' — pk  forall (k, k') € Q. (48)

For (k, k') € Q, denotdw(k, k) — {w(k, k') + pk' — pk}] by 6(k, k'). Thend(k, k') >0 by @48).
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Step4: We now use48) to establish an important characterization of good pathsik.ebe
any feasible path frork,. Then, noting thatk;, k;+1) € Q for t >0, and denoting (k;, k;+1) by
o, for t >0, we have

o
{k;} is a good path iff » " &, < oc. (49)
=0

To see this, note that fdf € N

T T T
D Twke, key) — wk, 1= [pk — phipal = ) &
=0 =0 t=0
T
= pko — Pkry1— ) 6. (50)
t=0

If Y720 & < oo, then using 4), the right-hand side expression is bounded below by a real
number, independent @f, and sofk;} is good. Conversely, ifk;} is good, then there i€ € R
such that the left-hand side of (50) is bounded belov@&tipdependent of’, and soZ,T:o or is
bounded above bypk, — G], independent of’; thus,> 72, d, < oo must hold. A consequence

of this characterization result is that{i;} is a feasible path fronk,, which isnot good, then
(using (50)):

T
> wki, kip1) — wik, k)] > —o0  asT — oo. (51)
t=0

Stepb: Part of the above characterization result leads to the basic asymptotic properties of good
paths. If{k;} is any good path from,, then, noting thatk,, k;+1) € Q for r >0, and denoting
O(ky, ki11) by o, for t >0, we have
(|) oy — Oast T>Aoo, (52)
(i) k¢, cr) — (k,¢) ast — oo.

While (52)(i) follows directly from (49), (52)(ii) follows from (52)(i) and the “value-loss lemma”,
originally due to Radner [27], which we now proceed to discuss in the context of our framework.
Note thatw(k, k'), and therefored(k, k') is continuous orf2, and further thab(k, k') > 0
whenevelrk, k') # (k, k), by strict concavity of andu. For 0< ¢ < k, define the set

S(e) = {(k, k') € Q: k<k,k'<k, and|k — k| + |k — k| =¢).

Now, S(¢) is a nhon-empty, compact setit?, andd(k, k') is continuous or$ (). So there is some
(k, k") € S(¢), such thab(k, k') > o(k, k') for all (k, k") € S(¢). Denotingd(k, k') by 6, we see
thatd > 0, since(k, k') # (k, k). Thus,d(k, k') >0 > O for all (k, k') € S(e).

Applying the above “value-loss” result t@;, k;1+1) € Q, we must havek,, k,+1) — (k k) as
t — o0, by (52)(i). It then follows that; = f(k;—1) — ks — f(k) — k = ¢ ast — oo. This
establishes (52)(ii).

Step6: We now observe, using (45), thit} must be a good path from,. For, if {k,} is not
a good path front,, then noting thafk,} is a good path front,, there isG € R, andN e N,
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such that, foil > N
T T

[wike, ki1) — wike, keyD)] =Y [wike, kry1) — wik, k)]
t=0 =0
T ~ A~ - -
+ ) (wlk, k) — wiks, k1)

t=0

T ~ ~ - -
> G+ Yy (wk, k) —wk, k)] (53)

t=0

The expression in the third line d88) goes tao asT — oo by using (51). Thus, the left-hand
side expression in the first line of (53) goesawasT — oo. But this would contradict the
property (45) already established f@f}.

Step7: The conditions (44) can be combined to yield fgrO0:

wk;, kiv1) + pratkic1 — prks >wk, k') + piprk’ — pik forall (k, k') € Q (54)

a generalized profit-maximization property, at the pri¢gg. For (k, k') € Q, denote[w (k;,
kit1) + prvakisr — poke — {w(k, k') + pipak’ — pik}1 by L(k, k'). ThenL(k, k') >0 by (54). In
this final step, we use (54) to establish tffaf overtakes every other feasible path frémn Let
{k;} be any feasible path froi),, which is distinct from{k,}. Noting that(k;, k;+1) e Qfort >0,
denoteL (k;, k;+1) by L} for ¢ > 0. Lett be the first period when the paths differ; thats # ke,
butk, = k, fort = 0,...,7 — 1. Then,c, # &, and so by using the strict concavity of we
would getL’ > 0. We now consider two cases (R;} is not good; (ii){k;} is good. In case (i),
we write forT € N

T T
[wiky, ki 1) — wike, kerD)] =Y (k] kjyq) — wik, b)]
t=0 =0
T A~ A -_ -
+ Y [wlk, k) — wik, k1)) (55)
t=0

and note that sincg; } is good, the second expression on the right-hand sidg%)fi¢ bounded
above, independent @f, while since{k;} is not good, the first expression on the right-hand side
of (55) goes to-oo asT — oo, by (51). Thus, the left-hand side expression of (55) must go
asT — oo. Consequently{k,} overtakedk;}.

In case (ii), we have fol' € N, with T > =:

T T
[wik;, kiy 1) — wike, ker)] = D [pek; — prraky 4]
+=0 t=0
T T
- [piki — pryakesa] — Z L;
t=0 t=0
T

= [ﬁt+ll€t+l - f’t+1k;+1] - Z L;
t=0

< [proakiy1 — pryikyyq] — Lo (56)
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Now, since{k;} and{k/} are both good, we haveé — k, k; — k ast — oo, and furthe; — ¢
ast — oo, by (62), so thatp(¢r) = u'(¢;) - u/(¢) = p ast — oo. Thus, there iV > z, such
that forallT > N, we have

[ﬁt+1]€z+l - ﬁz+1k;+1] < (L:/2). (57)
Then, using%6) and (57), we have for all > N,

a

> lwk]. ki yq) — wiki, k1)) < —(Le/2)
t=0

so that{k,} overtakegk/}. O
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