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Abstract

A definition of a utilitarian social welfare relation (SWR) for infinite utility streams is proposed. Such
a relation is characterized in terms of the Pareto, Anonymity and Partial Unit Comparability Axioms. The
merits of the utilitarian SWR, relative to the more restrictive SWR induced by the overtaking criterion, are
examined.
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1. Introduction

In comparing infinite utility streams, two guiding principles have generally been found to be
widely acceptable. If, like Ramsey[28], we would like to treat all generations equally, we have
to accept the Anonymity Axiom.1 If our intertemporal preference structure is to be (positively)
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1 Many authors have felt that a stronger notion than the Anonymity Axiom is needed to reflect intergenerational equity
in intertemporal preferences. However, there appears to be general agreement that any notion of intergenerational equity
in intertemporal preferences must include the Anonymity Axiom.
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sensitive to the well-being of each generation, we are led to impose the Pareto Axiom.2 It would
be convenient if one could construct asocial welfare function(SWF) which respected both of
these principles, because then comparisons of infinite utility streams could be conveniently carried
out in terms of the social welfare numbers associated with the utility streams.

In fact, it would be futile to try to construct such a SWF, because it can be shown that there is
no SWF which respects both the Anonymity and the Pareto axioms. In other words, all Paretian
SWFs are necessarily inequitable.3

This need not deter progress, however, because if one could construct asocial welfare ordering
(SWO) respecting the two axioms, we would be able to compare all infinite utility streams in terms
of this ordering. Svensson [33] was the first to show that such an ordering does exist. However, it
is worth noting that he obtains the ordering by non-constructive methods; specifically, he defines
a pre-order (a binary relation satisfying reflexivity and transitivity) satisfying the two axioms,
and then completes the order by appealing to Szpilrajn’s lemma.4 Thus, knowing that such an
ordering exists does not necessarily provide a clue as to how it might be constructed.

In view of this, we might consider lowering our demands further and be willing to acceptsocial
welfare relations(SWRs) which arepre-ordersthat allow (consistent) comparisons between only
some pairs of infinite utility streams but not others.5 In this case, one can actually construct several
SWRs satisfying the Anonymity and Pareto Axioms. The Suppes-Sen grading principle6 and the
pre-orders induced by the “overtaking” or “catching-up” criterion7 are examples of such SWRs.

One way to be selective among such SWRs is to impose an axiom ensuring some degree
of intertemporal comparability of utilities. In the context of intertemporal preferences, a partial
(cardinal) unit comparability axiom appears to be a natual comparability requirement to have.
If we do so, we obtain an interesting social welfare relation which compares only those infinite
utility streams which are “Pareto comparable” beyond a finite horizon, and which applies standard
utilitarian principles up to that finite horizon.

This utilitarian SWR satisfies the Anonymity, Pareto and Partial Unit Comparability axioms.
It turns out that it is theleast restrictivepre-order which does so.8 If any SWR satisfies the

2 The Rawlsian SWF, which figures quite prominently in discussions on equity, violates the Pareto principle, even in
comparisons of utility streams where each utility stream has a well-defined minimum. For example, in comparingx and
x′, wherex1 = x′

1 = 0.4, andxn = 0.5+ (1/n) for n�2,x′
n = 0.5 for n�2,x is clearly Pareto-superior tox′, but since

minn� 1 xn = 0.4 = minn� 1 x′
n, the Rawlsian SWF would consider the utility sequences to be indifferent.

3 While this impossibility result might sound familiar, it has actually been established only recently in Basu and Mitra
[6], without any domain restriction and without any other axiom imposed on preferences. The well-known impossibility
result of Diamond[15] was established for a specific domain and, more importantly, with an additional continuity axiom
on preferences.

4 Recall that a standard way of proving Szpilrajn’s Lemma is by using Zorn’s Lemma, which is known to be equivalent
to the Axiom of Choice. See, for example, Fishburn[16] for a proof of Szpilrajn’s Lemma.

5 Pre-orders, incomplete though they may be, have turned out to be powerful tools. The use of the Lorenz pre-order
in studies of income inequality, and the pre-order induced by the overtaking criterion in optimal growth theory are two
well-known examples.

6 The Grading Principle is due to Suppes[32]. For a comprehensive analysis of it, see Sen[30].
7 For the definitions of the SWRs appropriate to this discussion, see Section4.
8 To elaborate, if one identifies a binary relation with its graph, then the setSU representing the graph of the utilitarian

SWR is the smallest set (in terms of the partial order of⊂) among all sets representing graphs of SWRs which satisfy the
Anonymity, Pareto and Partial Unit Comparability Axioms. This is discussed fully in Section3.1. The SWRs induced by
the overtaking criterion (discussed in detail in Section4) satisfy all three axioms, but they are clearly not the least restrictive
SWRs which do so. The Suppes-Sen grading principle is, of course, a less restrictive pre-order than the utilitarian SWR,
but it does not satisfy the Partial Unit Comparability axiom. This point is discussed in Section3.2below.
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three axioms, then the utilitarian SWR is asubrelationto it in the sense that the rankings of the
utilitarian SWR must always be respected by any such SWR. In this sense, the utilitarian SWR is
characterizedby the Anonymity, Pareto and Partial Unit Comparability axioms.9

We compare our utilitarian SWR with the SWRs induced by the overtaking or catching-up
criteria in Section 4. A noteworthy feature of our utilitarian SWR is that it is axiomatized without
postulating any continuity property on the pre-order in the infinite dimensional space containing
the set of utility streams. In contrast, axiomatic characterizations of the more restrictive SWRs
induced by the overtaking criterion typically involve some form of a continuity axiom.10

We argue that the rankings provided by our utilitarian SWR are more widely acceptable than the
rankings provided by the overtaking SWR. Of course, the overtaking (and more so the catching-
up) SWR provides rankings of two utility streams in many cases in which the utilitarian SWR finds
them non-comparable. That is, the utilitarian SWR is more incomplete than the overtaking SWR.
However, as an application of the utilitarian SWR, we establish, in the standard aggregative model
of optimal growth without discounting, the somewhat surprising result that this incompleteness
is not a handicap in characterizing dynamic optimal behavior, and the power of the overtaking (or
catching-up) SWR to rank a larger set of utility streams than the utilitarian SWR is found to be
completely superfluous.

2. Notation and definitions

Let N denote, as usual, the set of natural numbers{1,2,3, . . .}, and letR denote the set of real
numbers. LetYdenote the closed interval[0,1], and let the setYN be denoted byX. Then,X is the
domain of utility sequences that we are interested in. Hence,x ≡ (x1, x2, . . .) ∈ X if and only if
xn ∈ [0,1] for all n ∈ N.

Fory, z ∈ RN, we writey�z if yi �zi for all i ∈ N; and, we writey > z if y�z, andy �= z.
A SWR is a binary relation,�, onX, which is reflexive and transitive (a pre-ordering).11 We

associate with� its symmetric and asymmetric components in the usual way. Thus, we write
x ∼ y whenx�y andy�x both hold; and, we writex � y whenx�y holds, buty�x does
not hold. A SWO is a binary relation,�, onX, which is complete12 and transitive (a complete
pre-ordering).

A SWR �A is asubrelationto a SWR�B if (a) x, y ∈ X andx�Ay impliesx�By; and (b)
x, y ∈ X andx �A y impliesx �B y. A SWO �A is compatible witha SWR�B if and only if
�B is a subrelation to�A.

Givenx ∈ X, andN ∈ N, let us denote byx(N) the vector consisting of the firstN elements
of x and byx[N ] the sequence from term(N + 1) onwards. So,x(N) = (x1, x2, . . . , xN) and
x[N ] = (xN+1, xN+2, . . .). The sequence(x1, x2, . . . , xN ,0,0, . . .) is denoted by(x(N),0[N ]).
Given a vectorx(N), we useI (x(N)) to denote(x1 + · · · + xN).

9 In the same sense, the Suppes-Sen grading principle is characterized by the Anonymity and Pareto Axioms. See the
discussion in Section3.2.

10 The study by Brock[9] uses a “consistency axiom” which, together with the independence axiom, actually implies
a continuity restriction on the underlying preferences. A more recent study by Asheim and Tungodden[2] also uses a
continuity axiom. This point is discussed in detail in Section4.

11 In the economics literature, a pre-ordering is often referred to as a “partial ordering” or as a “quasi ordering”. However,
in the mathematics literature, the term “partial ordering” refers to a binary relation which is transitive andantisymmetric.
To avoid confusion, we use the mathematical terminology, since the term “pre-order” is never used in any other sense in
either discipline. Incidentally, our usage coincides with the terminology introduced in Debreu[13].

12 Since completeness implies reflexivity, a SWO is a SWR, which is complete.
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3. The utilitarian social welfare relation

In this section, we introduce a new definition of autilitarian SWR, and provide an axiomatic
characterization of it in terms of the Anonymity, Pareto and Partial Unit Comparability axioms.
We also relate our utilitarian SWR to the Suppes-Sen grading principle, which is characterized in
terms of the first two of these axioms.

Let us define a binary relation�U onX by:

x�Uy if and only if there isN ∈ N, such that

(I (x(N)), x[N ])�(I (y(N)), y[N ]). (1)

It is easy to check that�U is reflexive and transitive onX, so it is a SWR. We will call this
SWRutilitarian. Note that the utilitarian SWR ranks only those infinite utility streams which are
“Pareto comparable” beyond a finite horizon, and applies standard utilitarian principles up to that
finite horizon.

The SWR�U satisfies the following two desirable properties:

(a) If x, y ∈ X andN ∈ N and(I (x(N)), x[N ])�(I (y(N)), y[N ]) thenx�Uy (2)

and

(b) If x, y ∈ X andN ∈ N and(I (x(N)), x[N ]) > (I (y(N)), y[N ]) thenx �U y. (3)

The SWR�U also satisfies what has been called the “independent future” condition:

If x, y, z ∈ X thenx�Uy if and only if (z(N), x)�U(z(N), y) for everyN ∈ N.

This condition follows from postulates 3b and 4 in Koopmans[19], and is explicitly stated in this
form in Fleurbaey and Michel [17]. Thus, the passage of time does not alter the preferences, given
a common history upto any point of time.

3.1. Axiomatic characterization of the utilitarian SWR

Our objective is to establish an axiomatic characterization of the utilitarian SWR. To this end,
consider the following two axioms on a SWR�, which are fairly straightforward, and therefore
require no explanation.

Axiom 1 (Pareto). If x, y ∈ X, andx > y, thenx � y.

Axiom 2 (Anonymity). If x, y are inX, and there existi, j in N, such thatxi = yj andxj = yi ,
while xk = yk for all k ∈ N, such thatk �= i, j , thenx ∼ y.

The next axiom is an adaptation to the infinite domain of the standard assumption of unit
interpersonal comparability used in social choice theory (see, for instance, Sen[31], d’Aspremont
and Gevers [12], Roberts [29] and Basu [5]), expressed as an invariance axiom.13

13 Maskin[22] uses the weaker “full comparability axiom” in which one demands invariance only for acommonchange
of origin and a common change of scale for all agents. He is able to characterize utilitarianism (in finite societies) by
using this “full comparability axiom” (instead of the stronger “unit comparability axiom” in d’Aspremont-Gevers[12])
by exploiting in addition a continuity axiom.
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Axiom 3 (Partial Unit Comparability). If x, y ∈ X, � ∈ RN andN ∈ N satisfy:

x[N ] = y[N ] and x�y (4)

and

x + � ∈ X, y + � ∈ X (5)

then they must also satisfy:

x + ��y + �. (6)

Remarks. (i) The Unit Comparability axiom (on the infinite domain) asserts that preferences
are invariant to changes in the origins of the utility indices used in the various periods; it is also
invariant to a common change in the scale (by a positive factor) of the utility indices used in the
various periods. It would be formally stated as follows.14

Unit comparability: Let a, b, a′, b′ ∈ X be such that there exists a sequence of real numbers
{�n} and a positive real number� satisfying for alln ∈ N,

a′
n = �n + �an; b′

n = �n + �bn. (7)

Then,

a�b if and only if a′�b′. (8)

(ii) Axiom 3 is weaker than the Unit Comparability axiom, since we insist on the invariance with
respect to changes in origin only in comparing utility streams in which the streams are identical
from a certain point onwards.15

It is fairly straightforward to check that if the utilitarian SWR�U is a subrelation to a SWR�,
then� must satisfy the Pareto, Anonymity and Partial Unit Comparability Axioms. What is not so
obvious is that if� is any SWR satisfying these three axioms, then the utilitarian SWR�U must
be a subrelation to�. Essential to this complete characterization theorem is a technical lemma,
which should be of independent interest. This intermediate result provides a characterization of
the indifference classes (of SWRs satisfying the three axioms) on the subset ofX consisting of
utility streams with at most a finite number of non-zero entries.

Define:

X0 = {x ∈ X : x has at most a finite number of non-zero elements}. (9)

Note that forx ∈ X0, the sum
∑∞

n=1 xn is well-defined; we denote it by�(x). Forx ∈ X0, the
decreasing rearrangement ofx is clearly also well-defined; we denote it byx̂. Definem(x̂) =
min{N ∈ N : xn = 0 for all n�N}.

Lemma 1. (i) Suppose a SWR� satisfies Axioms2, 3. If x, y ∈ X0, and �(x) = �(y), then
x ∼ y. (ii) Suppose a SWR� satisfies Axioms1–3.If x, y ∈ X0 andx ∼ y, then�(x) = �(y).

14 This axiom has been used by Lauwers[21] in his axiomatic characterization of discounted utilitarianism.
15 Weaker than the above partial unit comparability axiom is theindependencepostulate, introduced by Debreu[14] in

the finite-horizon context, and studied by Koopmans[19] and Koopmans et al.[20] in an infinite-horizon context, in their
studies on the representation of preferences by additively separable utility functions.
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The proof of Lemma1(i) (see Section 6) follows the method used by Milnor [24] in his axiomatic
characterization of the Laplace criterion in games against nature. This idea has also been used in
the context of social choice theory in characterizing utilitarianism in a society with a finite number
of agents by d’Aspremont and Gevers [12]. For finite agent societies, a diagrammatic exposition
of their result is provided in Blackorby et al. [7].

We now present our characterization result regarding the utilitarian SWR�U .

Theorem 1. The utilitarian SWR�U is a subrelation to a SWR� if and only if � satisfies
Axioms1–3.

It is useful to view the above characterization result as saying that the utilitarian SWR is theleast
restrictiveSWR among all SWRs satisfying the Pareto,Anonymity and Partial Unit Comparability
axioms. For this purpose, it is convenient to identify a binary relation onXwith its graph inX2. 16

Denote byP(X2) the set of all subsets ofX2. Note that the binary relation⊂ (“subset of”) is
a pre-order onP(X2). If � is any binary relation onX, its graph:

S(�) = {(x, y) ∈ X2 : x�y} (10)

is a subset ofX2, and consequently,S(�) is an element ofP(X2).
We look at the subsetQ(X2) of P(X2) consisting of the graphs of those pre-orders onXwhich

satisfy Axioms1–3. Formally,Q(X2) is the subset ofP(X2), defined by

Q(X2) = {S(�) ∈ P(X2) : � is a pre-order onX satisfying Axioms 1-3}. (11)

Using Theorem1, we haveS(�U) ∈ Q(X2), and if � is any pre-order onX satisfying Axioms
1–3, thenS(�U) ⊂ S(�). Thus,S(�U) is a least element ofQ(X2) in terms of the pre-order
⊂. 17 In this sense, the utilitarian SWR is the least restrictive pre-order satisfying Axioms 1–3.

It follows from this result that the graph of�U is in fact the intersection of the graphs of all
pre-orders onX satisfying Axioms 1–3. Let us define

S =
⋂

S(�)∈Q(X2)

S(�). (12)

Then, by definition, we haveS ⊂ S(�) for everyS(�) ∈ Q(X2). SinceS(�U) ∈ Q(X2), we
haveS ⊂ S(�U). On the other hand, sinceS(�U) is a least element ofQ(X2) in terms of the
pre-order⊂, we haveS(�U) ⊂ S(�) for all S(�) ∈ Q(X2). That is,S(�U) ⊂ S. Thus, we have

S(�U) = S =
⋂

S(�)∈Q(X2)

S(�). (13)

3.2. Comparison with the grading principle

Recall that the Suppes-Sengrading principle is the binary relation�S defined18 on X as
follows:

x�Sy if and only if there is a finite permutation� of N, such thatx(�)�y.

16 Recall that a binary relation is oftendefinedprecisely by specifying its graph.
17 We use here the standard mathematical definition of a “least element” of a set, given a pre-order on that set. See, for

example, Debreu[13, p.8].
18 This formal definition of the Suppes-Sen grading principle in the context of infinite utility streams is due to Svensson

[33].



356 K. Basu, T. Mitra / Journal of Economic Theory 133 (2007) 350–373

It can be characterized as the least restrictive SWR satisfying the Pareto and Anonymity axioms;
see d’Aspremont[11] and Asheim et al. [1].

Proposition 1. A binary relation� on X satisfies Axioms1 and 2 if and only if the grading
principle�S is a subrelation to�.

The grading principle does not satisfy the partial unit comparability axiom, as can be seen
from the following example. Letx = (0.5,0.4,0.1,0.1, . . .) andy = (0.3,0.8,0.1,0.1, . . .).
Then,x andy are non-comparable by the Suppes-Sen grading principle, since there is no finite
permutation ofx which is �y, and there is no finite permutation ofy which is �x. However, if
we increase the utility origin of the first period by 0.1, and reduce the utility origin in the second
period by 0.1, we obtain the vectorsx̄ = (0.6,0.3,0.1,0.1, . . .) andȳ = (0.4,0.7,0.1,0.1, . . .).
Now, permuting the first two periods of the vectorȳ, and denoting the resulting vector byȳ(�),
we see that̄y(�) > x̄, so thatȳ is preferred tōx according to the Suppes-Sen grading principle.
Thus, the Suppes-Sen grading principle violates the partial unit comparability axiom.

The characterizations of the grading principle and the utilitarian SWR allow us to obtain a
SWO (a complete pre-order) compatible with the utilitarian SWR, which satisfies Anonymity and
the Pareto axioms. Since the binary relation�U satisfies the Anonymity and Pareto axioms (by
Theorem 1), the grading Principle�S is clearly a subrelation to�U (by Proposition 1). Thus, by
Theorem 2 of Svensson [33, p.1253], there is a complete pre-order� compatible with�U , which
satisfies the Pareto and Anonymity Axioms.

4. The overtaking criterion SWRs

The standard method of comparing utility streams in infinite-horizon intertemporal allocation
models, while respecting the equal treatment of all generations, is by employing the overtaking
criterion. The resulting pre-order is a generalization of the one used by Ramsey [28], and was pro-
posed independently by Atsumi [3] and von Weizsacker [34] in their studies on optimal economic
growth.

It would be useful to discuss the merits of our (less restrictive) utilitarian SWR with the (more
restrictive) overtaking SWRs.19 For this purpose, it would be convenient to have axiomatic
characterizations of the overtaking SWRs which are directly comparable to our characterization
of the utilitarian SWR. Unfortunately, the characterizations of the overtaking SWRs provided by
Brock [9] and more recently by Asheim and Tungodden [2] use axiom sets which make such a
direct comparison difficult.20 In this section, we provide an axiomatic characterization of the
overtaking SWRs, which will facilitate such a comparison.

We will show that the overtaking SWRs can be characterized in terms of Axioms 1–3 and an
additional “consistency” axiom. This consistency axiom is similar in spirit to Axiom 3 used by
Brock [9], who says that it “captures the notion that decisions on infinite programs are consistent
with decisions on finite programs of lengthn if n is large enough.”

The partial unit comparability axiom together with the consistency axiom imply a continuity
requirement on the SWR, similar to that used by Asheim and Tungodden [2] in their axiomatic

19A more appropriate way to describe them would be “the SWRs induced by the overtaking criterion and the catching-up
criterion”. The precise definitions are given in Section4.1.

20 In particular, neither of these papers uses the partial unit comparability axiom directly.
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characterization of the overtaking SWRs.21 Thus, in terms of the axiomatics, the difference
between the overtaking SWRs and our utilitarian SWR can be traced to imposing or not imposing a
continuity requirement on preferences. In this regard, the current work can be seen as a continuation
of the study in Basu and Mitra [6], where we deliberately refrained from imposing any continuity
axiom. Axioms on the continuity of preferences in infinite-dimensional spaces have been the most
controversial in the literature in this area, since the topology in which such continuity is assumed
determines to a large extent the nature of allowable preferences. These restrictions arise largely
from mathematical necessity and do not necessarily reflect any underlying ethical or economic
principle.

4.1. Axiomatic characterization of the overtaking SWRs

There are two definitions of the overtaking criterion commonly in use. We will define each in
turn and provide their axiomatic characterizations. Let us define22 a binary relation�C onX by

x�Cy if and only if there isN̄ ∈ N, such that

I (x(N))�I (y(N)) for all N�N̄ . (14)

It is easy to check that�C is reflexive and transitive onX, so it is a SWR. We will call it the
catching upSWR.

The SWR�C satisfies the following two properties:

(a) If x, y ∈ X andN̄ ∈ N andI (x(N))�I (y(N))

for all N�N̄, thenx�Cy (15)

and

(b) If x, y ∈ X andN̄ ∈ N andI (x(N))�I (y(N))

for all N�N̄, andI (x(N)) > I (y(N))

for a subsequence ofN�N̄, thenx �C y. (16)

We can obtain an axiomatic characterization of the catching up SWR in terms of Axioms1–3
of the previous section, and an additionalstrong consistencyaxiom, which we now state.

Axiom 4 (Strong consistency). Forx, y ∈ X,

(a) If there isN̄ ∈ N, such that(x(N),0[N ])�(y(N),0[N ])
for all N�N̄, thenx�y (17a)

(b) If there isN̄ ∈ N, such that(x(N),0[N ])�(y(N),0[N ])
for all N�N̄, with (x(N),0[N ]) � (y(N),0[N ])
for a subsequence ofN�N̄, thenx � y (17b)

The characterization result can be stated and proved as follows.

21 This is discussed in detail in the discussion following Theorems2 and3.
22 This definition is used by Svensson[33].
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Theorem 2. A SWR� satisfies Axioms1–4 if and only if�C is a subrelation to�.

Remark. Asheim and Tungodden [2] use a “Strong Preference Continuity” axiom in their char-
acterization of the catching up SWR. This axiom is stated as follows.

Strong preference continuity: Supposex, y ∈ X andN̄ ∈ N, satisfy:

(y(N), x[N ])�(x(N), x[N ]) for all N�N̄ (Ca)

and:

(y(N), x[N ]) � (x(N), x[N ]) for a subsequence ofN�N̄ (Cb)

theny � x.
This axiom is implied by Axioms3 and 4. Using Axiom 3 and (Ca), (Cb), we have

(y(N),0[N ])�(x(N),0[N ]) for all N�N̄ (18)

and:

(y(N),0[N ]) � (x(N),0[N ]) for a subsequence ofN�N̄ (19)

Thus, by Axiom4, we obtainy � x.
To see that this is indeed a strong continuity requirement, define the sequence of infinite utility

streamszs = (y(s), x[s]) for eachs ∈ N. Then, we see thaty is the (pointwise) limit ofzs

as s → ∞. Thus, the axiom says that ifzs�x for all s sufficiently large, withzs � x for a
subsequence ofs, then the pointwise limit ofzs (namely,y) � x. Quite apart from the fact that
preferences cannot be reversed in the limit, this in fact demands that strict preference prevail in
the limit.23

The alternative version of the overtaking criterion24 can be formalized as follows. Let us define
the binary relation�O by

x�Oy if and only if

either(i) ∃ N̄ ∈ N, such thatI (x(N)) > I (y(N)) for all N�N̄

or (ii ) ∃N̄ ∈ N, such thatI (x(N)) = I (y(N)) for all N�N̄ . (20)

It is easy to check that�O is reflexive and transitive onX, so it is a SWR. We will call it the
overtakingSWR.

It can be verified that the SWR�O satisfies the following two properties:

(a) x �O y if and only if there isN̄ ∈ N,

such thatI (x(N)) > I (y(N)) for all N�N̄ (21)

and

(b) x ∼O y if and only if there isN̄ ∈ N,

such thatI (x(N)) = I (y(N)) for all N�N̄ . (22)

23Asheim and Tungodden[2] use the word “strong” here because strict preference in the limit is based on strict preference
holding only along a subsequence ofs. But, clearly, this continuity requirement is very strong for other reasons as well.

24 This is the version used by Atsumi[3], von Weizsacker[34] and Brock[9].
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It follows that

(i) x �O y �⇒ x �C y; (ii ) x ∼O y �⇒ x ∼C y. (23)

We can obtain an axiomatic characterization of the strong overtaking SWR in terms of Axioms
1–3 of the previous section, and an additionalweak consistencyaxiom, which we now state.

Axiom 5 (Weak consistency). Forx, y ∈ X,

(a) If there isN̄ ∈ N, such that(x(N),0[N ]) ∼ (y(N),0[N ])
for all N�N̄, thenx ∼ y (24a)

(b) If there isN̄ ∈ N, such that(x(N),0[N ]) � (y(N),0[N ])
for all N�N̄, thenx � y. (24b)

The characterization result for the overtaking SWR can be stated as follows. The proof, which
is similar to the proof of Theorem2, is omitted.

Theorem 3. A SWR� satisfies Axioms1–3and5 if and only if�O is a subrelation to�.

Remark. Asheim and Tungodden [2] use a “Weak Preference Continuity” axiom in their char-
acterization of the overtaking SWR. This axiom is stated as follows.

Weak preference continuity: Supposex, y ∈ X andN̄ ∈ N, satisfy:

(y(N), x[N ]) � (x(N), x[N ]) for all N�N̄ (Cw)

theny � x.
This axiom is implied by Axioms3 and 5. Using Axiom 3 and (Cw), we have

(y(N),0[N ])�(x(N),0[N ]) for all N�N̄ .

Further

(x(N),0[N ])�(y(N),0[N ])
cannot hold for anyN�N̄ . For if it did hold for someN�N̄ , then by Axiom3, we would get

(x(N), x[N ])�(y(N), x[N ])
for thatN . But, this would contradict (Cw). Thus, we have

(y(N),0[N ]) � (x(N),0[N ]) for all N�N̄

and, by Axiom5, we obtainy � x.
Define the sequence of infinite utility streamszs = (y(s), x[s]) for eachs ∈ N. Then, we

see thaty is the (pointwise) limit ofzs ass → ∞. Thus, the axiom says that ifzs � x for all s
sufficiently large, then the pointwise limit ofzs (namely,y) � x.

A corollary of the characterization results on the utilitarian and the overtaking SWRs (Theorems
1–3), which is useful for our discussion in Sections 4.2 and 5, can be stated as follows.
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Corollary 1. The utilitarian SWR�U is a subrelation to the overtaking SWR�O , which in turn
is a subrelation to the catching up SWR�C .

4.2. The utilitarian SWR versus the overtaking SWRs

We find the ranking of utility streams according to the utilitarian SWR to be persuasive. Consider
a situation in which faced with a choice betweenx andy, one finds that there is someN ′ ∈ N,
such that

(I (x(N ′)), x[N ′]) > (I (y(N ′), y[N ′])).
Then one can findN�N ′ such that

I (x(N)) > I (y(N)) and x[N ]�y[N ].
Thus, one may consider getting together the members of the finite society{1, . . . , N}, and asking
them to rankx versusy. If they apply utilitarian principles to themselves, they will rankx above
y. In this case, it is legitimate for theinfinite-horizon societyto rankxaboveybecause the infinite
number of future generations, who arenot included in the finite society{1, . . . , N}, are either
indifferent betweenxandyor preferx to y. In other words, in this situation, all future generations
beyondNare willing to go along with the (utilitarian) preferences of the finite society{1, . . . , N}.

No such consensus is to be obtained with the overtaking SWR. Consider the following example
of two utility streams, where the overtaking SWR can compare the two streams and the utilitarian
SWR declares them non-comparable.

x = (0.2, 0, 0.1, 0, 0.1, 0, . . .),

y = (0, 0.1, 0, 0.1, 0, 0.1, . . .).

}

We can verify that forN̄ = 1,

I (x(N)) > I (y(N)) for all N�N̄

so thatx � y according to the overtaking SWR.
The question arises whetherx shouldbe preferred toy by the infinite horizon society. This is

not altogether clear. The problem with judgingx � y in such a case can be seen as follows. If we
look at any finite-horizon society, and ask the society to rankx versusy, they will indeed rank
x higher thany, if they apply utilitarian principles to themselves. However, no matter how large
the finite-horizon, there are always aninfinitenumber of future generations who rankx belowy.
Thus, it is never possible to have consensus of opinion between any finite-horizon society and the
infinite number of future generations not included in that finite society.25

A comparison of the utilitarian SWR with the overtaking or catching-up SWR can also be
made from a somewhat different perspective. Recall that the need to construct such SWRs arises
because SWFs satisfying Pareto and Anonymity axioms do not exist (and no SWO satisfying
the two axioms has been constructed). If one discounted future utilities one could get a SWF

25 It is possible to use an extended notion of Anonymity, which does not conflict with the Pareto principle, which makes
comparisons of utility streams, of the sort described in the example, possible. Such an extended notion of Anonymity
leads to an extended grading principle and an extended utilitarian SWR, which are more complete SWRs than the grading
principle and the utilitarian SWR (respectively) discussed in this paper. For results along these lines, see the recent papers
by Mitra and Basu[26] and Banerjee[4].
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(in our setting) by simply summing up the discounted stream of utilities. The Pareto Axiom
would be satisfied but the Anonymity axiom would, of course, be violated. Loosely speaking,
this violation could be considered to be “small” for discount factors close to 1. Thus, one way
of checking for robustness of a SWR, satisfying Anonymity and the Pareto axioms, would be to
see whether the ranking between two alternativesx andy provided by the SWR is preserved for
discount factors close to 1 in the discounted present value SWF.26

Note that ifx is preferred toy according to the utilitarian SWR, then there is someN ∈ N,

such thatI (x(N)) > I (y(N)) andx[N ]�y[N ]. Thus, there is a discount factor�̂ ∈ (0,1), such
that for all� ∈ (�̂,1), we would have

N∑
n=1

�n−1x(n) >

N∑
n=1

�n−1y(n) and �n−1x(n)��n−1y(n) for n�N + 1.

Consequently, for all� ∈ (�̂,1), we would havef (x; �) > f (y; �), wheref (·, �) is the discounted
present value SWF, corresponding to the discount factor�.

The overtaking SWR doesnot have this robustness property, and we show this by presenting
a concrete example of two utility streamsx andy, such thatx is preferred toy according to the
overtaking SWR, buty is preferred tox according to the discounted present value SWFfor every
� ∈ (0,1). 27

Definex andy as follows:

x = (0, 0.5 + a, a2, a3, a4, a5, . . .),

y = (0.5, 0, a, a2, a3, a4, . . .),

wherea = (1/8). DenotingI (y(N)) − I (x(N)) by AN , we see that

A1 = 0.5, AN = −aN−1 for all N�2. (25)

Clearly then we have

I (x(N)) > I (y(N)) for all N�2

and consequentlyx �O y.
We now claim that for the above example, for all� ∈ (0,1),

f (x, �) ≡
∞∑
n=1

�n−1x(n) <

∞∑
n=1

�n−1y(n) ≡ f (y, �). (26)

Suppose, on the contrary, there is some� ∈ (0,1), such that

f (x, �)�f (y, �). (27)

Given this� ∈ (0,1), denote(1− �)/2 by�; then� > 0. We can choosēN ∈ N large enough so
that

�N̄ /(1 − �)�(�/2). (28)

26 This robustness check was suggested to us by Jorgen Weibull.
27Although the overtaking criterion has been discussed at length in the literature, we are not aware of any paper which

presents such an example.
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Using (28), note that for allN�N̄ , we have

∞∑
n=N+1

�n−1x(n)�
∞∑

n=N+1

�n−1 = �N/(1 − �)��N̄ /(1 − �)�(�/2). (29)

Using (27) and (29), note that for allN�N̄, we have

N∑
n=1

�n−1x(n) =
∞∑
n=1

�n−1x(n) −
∞∑

n=N+1

�n−1x(n)

= f (x, �) −
∞∑

n=N+1

�n−1x(n)

� f (y, �) − (�/2)

�
N∑
n=1

�n−1y(n) − (�/2).

Thus, for allN�N̄ , we obtain

N∑
n=1

�n−1y(n) −
N∑
n=1

�n−1x(n)�(�/2). (30)

Using (25), we now write for allN ∈ N,

N∑
n=1

�n−1(y(n) − x(n)) = A1 + (A2 − A1)� + · · · + (AN − AN−1)�
N−1

= A1(1 − �) + · · · + AN−1�
N−2(1 − �) + AN�N−1

= 0.5(1 − �) − (1 − �)[�a + �2a2

+ · · · + �N−2aN−2] − �N−1aN−1

� 0.5(1 − �) − (1 − �)
∞∑
n=1

�nan − �N−1aN−1

= 0.5(1 − �) − (1 − �)[�a/(1 − �a)]
−�N−1aN−1. (31)

We have

[�a/(1 − �a)]�[a/(1 − a)] = (1/7)

and using this information in (31), we obtain for allN ∈ N,

N∑
n=1

�n−1(y(n) − x(n))�(5/14)(1 − �) − �N−1aN−1. (32)

Combining (30) and (32), we obtain for allN�N̄ ,

(1 − �)/4 = (�/2)�(5/14)(1 − �) − �N−1aN−1.
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This means that for allN�N̄ , we have

�N−1aN−1�(3/28)(1 − �). (33)

Note that the right-hand side of (33) is a positive constant (since� ∈ (0,1) is given) independent
of N . The left-hand side of (33) depends onN , and goes to zero asN → ∞. This contradiction
establishes our claim (26). That isy is preferred tox according to the present discounted value
SWF for every� ∈ (0,1).

In fact, for this example, the sumsf (x, �) andf (y, �) exist even for� = 1, and it is easy to
check that

f (x,1) ≡
∞∑
n=1

x(n) =
∞∑
n=1

y(n) ≡ f (y,1)

so that, according to utilitarian principles, certainly one should declarex to be indifferent toy,
but as we have noted above,x is strictly preferred toy according to the overtaking criterion.28

5. An application to optimal growth theory

We have argued above that Axioms 4 or 5 are not as readily acceptable as Axioms 1–3; in other
words, we find the overtaking and catching-up SWRs less persuasive than the utilitarian SWR.
Nevertheless, almost all of the theory of optimal intertemporal allocation, in which generations
are treated equally in its preference structure, uses some form of the overtaking or catching up
SWR, and therefore accepts Axiom 4 or 5 (in addition to Axioms 1–3). The reason for this is
that even though Axiom 4 (or 5) is not an obvious axiom to accept, it gives sufficient structure
to intertemporal preferences so that the theory of optimal intertemporal allocation has some
predictive power: a path which is optimal according to this pre-ordering in the typical intertemporal
model is unique, and the nature of such an optimal path can be described quite accurately, both
in terms of short-run characteristics (theRamsey–Euleror competitiveconditions), and long-run
behavior (theturnpikeproperty).

The presumption appears to be that if we wanted to proceed with intertemporal preferences
satisfying only Axioms 1–3 (that is,without imposing something like Axiom 4 or 5), we would
not have a useful theory of optimal behavior over time. Since the utilitarian SWR is less complete,
it would allow less comparisons of intertemporal paths, and consequently there could be many
maximal points according to the utilitarian SWR. However, this issue has not been explored in
the literature, and therefore such misgivings about a theory based solely on the utilitarian SWR
might be premature.

We will establish in this section the rather surprising result that in the standard neoclassical
model of optimal growth without discounting,a maximal path according to the utilitarian SWR
is in fact unique and it overtakes all other paths starting from the same initial condition. This
shows that the additional power of comparison, gained by using the overtaking SWR or catching
up SWR, is redundant in this context.29

28 We owe this remark to Wolfgang Buchholz.
29 It is of interest to enquire whether this result generalizes to optimal growth models with heterogenous capital goods.

While this general question has not been settled, Mitra[25] has shown that, in a model of forestry (which is a specific
instance of a model with heterogenous capital goods), the result holds.
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We begin by describing the standard one-good model of optimal growth, where future utilities
are not discounted relative to the present. The framework is described by a pair of functions(f, u),
wheref is the production function andu the utility function.

The production function,f : R+ → R+ will be supposed to satisfy the following assumptions:

(F.1) f (0) = 0, f is increasing, continuous and concave onR+.
(F.2) f is twice continuously differentiable onR++, with f ′(k) > 0 andf

′′
(k) < 0 for k > 0.

(F.3) limk→0[f (k)/k] > 1 and limk→∞[f (k)/k] < 1.

The utility function,u : R+ → R will be supposed to satisfy the following assumptions:

(U.1) u is increasing, continuous and concave onR+.
(U.2) u is twice continuously differentiable onR++, with u′(c) > 0 andu

′′
(c) < 0 for c > 0.

(U.3) u′(c) → ∞ asc → 0.

It can be shown that there exist uniquely determined numbersk̄ andk̂ such that 0< k̂ < k̄ <

∞, andf (k̄) = k̄, f ′(k̂) = 1. We refer tok̄ as themaximum sustainable stockand tok̂ as the
golden-rule stock.

A feasible pathfrom k�0 is a sequence ofcapital stocks{kt } satisfying:

k0 = k, 0�kt+1�f (kt ) for t�0.

Associated with the feasible path{kt } from k is aconsumptionsequence{ct }, defined by

ct = f (kt−1) − kt for t�1

and autility sequence{xt }, defined by

xt = u(ct ) for t�1.

It is easy to show that for every feasible path{kt } from k�0, we have

kt �M(k) for t�0; ct �M(k) for t�1, (34)

where max{k̄, k} ≡ M(k). We will confine our discussion to feasible paths starting from initial
stocksk ∈ [0, k̄]. Then, sinceM(k) = k̄, it follows that for every feasible path{kt } fromk ∈ [0, k̄],
we have

kt � k̄ for t�0; ct � k̄ for t�1; xt �u(k̄) for t�1.

Thus, utility sequences associated with feasible paths fromk ∈ [0, k̄] belong toX = [0,1]N,
as in our framework of Section2, if we normalizeu(0) = 0 andu(k̄) = 1. (Note that such a
normalization does not change the ranking of feasible paths according to the utilitarian, catching-
up or overtaking SWRs.)

We will say that a feasible path{kt } from ko ismaximalif there is no feasible path{k′
t } from ko

such that

x′ �U x

That is, in terms of the pre-order�U , the utility sequence{xt } associated with the feasible path
{kt } from ko is amaximal elementamong all sequences{x′

t } associated with feasible paths{k′
t }

from ko. 30

30 Using the result of Brock[8], one can infer that there exists a maximal path in our framework.
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Note that�U is a pre-order which allows us to compare fewer utility sequences than the catching
up pre-order�C or the overtaking pre-order�O . Nevertheless, we will show that a maximal path
actually has a very strong property: it overtakes every other feasible path starting from the same
initial stock. That is, if the feasible path{kt } from ko is maximal, then for every other feasible
path{k′

t } from ko, we have

x �O x′

so that{xt } is in fact thegreatest element, in terms of the strict overtaking pre-order�O , among
all sequences{x′

t } associated with feasible paths{k′
t } from ko. Thus, the pre-order�U is sufficient

for a completely satisfactory theory of optimal growth, making the additional (often dubious)
comparisons, made possible by the catching-up or overtaking pre-orders, quite superfluous.

Theorem 4. Let {k̄t } be any maximal path fromko ∈ (0, k̄], in the aggregative neoclassical
model, with associated utility sequence{x̄t }. Then,

x̄ �O x′,

where{x′
t } is the utility sequence associated with any other feasible path{k′

t } fromko.

The proof of this result (presented in the next section) is fairly long and involved, so we provide
here the basic logic of it.

A maximal element of our utilitarian SWR has two features. First, given an arbitraryfinite
horizon, if a maximal path is compared with any other path, which is identical to the maximal path
beyond this finite horizon, then the sum of utilities over the finite horizon must be maximized at
the maximal path. This yields the information (in the neoclassical growth model) that the maximal
path must satisfy theRamsey–Euler conditionsfor all time, being simply the first-order conditions
of the appropriate maximization problem. Second, the maximal path cannot be Pareto dominated
by any other path, so that the maximal path must beefficientin terms of the consumption sequence
(generating the utility sequence), since the utility function is increasing. These two features imply,
by a beautiful characterization result of Brock[10], that there is no path which can overtake a
maximal path by a positive finite amount.31 This is Step 1 in the proof, and it is where one can see
clearly how the two features of the utilitarian SWR are used. (The first step applies to all growth
models for which Brock’s characterization result is valid, and this is a larger class of models than
is considered here, including in particular, models with changing technology over time.)

To infer from this result that a maximal path in fact overtakes every other path (starting from the
same initial conditions) takes a considerable amount of additional work; specifically, it involves
seeing the full implications of the result (obtained in Step 1) for the particular growth model
examined here. The line of argument followed here crucially uses the stationary structure of
the growth model, and the strict concavity of the production and utility functions, and can be
conveniently subdivided into two parts.

The first part (Steps 2–6 in the proof) derivesasymptoticproperties of paths which are not
“infinitely worse” (in terms of the sum of utilities) than a particular stationary path called a
golden-rule path. These paths are calledgood, and their long-run properties can be derived solely
by using the (stationary) shadow-prices associated with the golden-rule path, a method principally

31 Paths which have this feature are called “weakly maximal” by Brock[8,10]. We deliberately refrain from using this
terminology in this paper to avoid confusion.
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due to Brock[8]. The idea then is to note that a maximal path is necessarily good, and therefore
has precisely all the “right” long-run properties, that a path which was optimal according to the
usual overtaking (or catching-up) criteria would have.

This still leaves open the possibility that a maximal path might misallocate resources over
time in transitioncompared to a path which was optimal according to the usual overtaking (or
catching-up) criteria. The second part (Step 7) of the argument can be seen to demonstrate that
this possibility can be ruled out, by following a method that is essentially due to Gale [18]. This is
accomplished by using the Ramsey–Euler equations to provide a (typically non-stationary) price
support for the maximal path itself, and then exploiting the long-run properties ofall good paths,
to conclude that any deviation from the maximal path leads to a loss, in terms of the sum of utilities
over a certain finite horizon, which can never be recovered in the future beyond that horizon.

6. Proofs

Proof of Lemma 1. (i) Let m = max{m(x̂),m(ŷ)}. Then, forn�m, we havex̂n = ŷn = 0. We
prove the result by induction onm. Form = 1, we havex = y = 0, and the result is trivially true.
Suppose, next, that the result is true form = 1, . . . ,M, whereM ∈ N. We want to prove that the
result is true form = M + 1.

Supposex, y ∈ X such that max{m(x̂),m(ŷ)} = M + 1. If x̂ = ŷ, thenx ∼ y by the
Anonymity Axiom. So, we need only consider the case in whichx̂ �= ŷ. Then, there exist some
i, j ∈ {1, . . . ,M}, such thatx̂i > ŷi and x̂j < ŷj . Define�n = min{x̂n, ŷn}, x′

n = x̂n − �n
andy′

n = ŷn − �n for all n ∈ N. Notice thatx′, y′ ∈ X0, andx′ � x̂, while y′ � ŷ. Further, we
have�(x′) = �(y′). Also, y′

i = 0, andx′
j = 0; furthermore,x′

n = y′
n = 0 for all n�M + 1.

It follows that m(x̂′)�M andm(ŷ′)�M; consequently max{m(x̂′),m(ŷ′)}�M. Thus by the
induction hypothesis,̂x′ ∼ ŷ′, and by the Anonymity axiom, we must havex′ ∼ y′. Now, using
the Partial Unit Comparability axiom, we getx̂ ∼ ŷ. The Anonymity Axiom can now be employed
again to conclude thatx ∼ y. This completes the proof of (i) by induction.

(ii) Suppose, on the contrary, there existx, y ∈ X0 satisfyingx ∼ y, but�(x) �= �(y). Without
loss of generality, we may suppose that�(x) > �(y); denote[�(x) − �(y)] by d. Clearly, there
existsN ∈ N, such thatxi = yi = 0 for all i > N . Then, we have 0< d�N . Definex′ ∈ RN

as follows:

x′
i = yi for i = 1, . . . , N,

x′
i = (d/N) for i = N + 1, . . . ,2N,

x′
i = 0 for i > 2N.




Clearly,x′ ∈ X andx′ > y, so by the Pareto axiom,x′ � y. It is also clear thatx′ ∈ X0, and
�(x′) = �(y) + d = �(x). Thus, by part (i) of the Lemma, we havex′ ∼ x. Sincex ∼ y, we
must havex′ ∼ y, a contradiction, which establishes (ii).�

Proof of Theorem 1. Necessity: Suppose the utilitarian SWR�U is a subrelation to a SWR�.
We need to verify that� satisfies Axioms1–3. To verify that� satisfies the Pareto axiom, let
x, y ∈ X, such that there is somej ∈ N for which xj > yj , while xk�yk for all k �= j . Then,
clearly, we have(I (x(j)), x[j ]) > (I (y(j)), y[j ]), sox �U y by (3). Since�U is a subrelation
to �, we havex � y. To verify that� satisfies the Anonymity axiom, letx, y ∈ X, andi, j ∈ N

be such thatxi = yj andxj = yi , whilexk = yk for all k ∈ N, such thatk �= i, j . Then, defining
N = max{i, j}, we have(I (x(N)), x[N ]) = (I (y(N)), y[N ]), so thatx�Uy andy�Ux by (2).
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Since�U is a subrelation to�, we havex�y andy�x. Thus,x ∼ y, as required. To verify the
Partial Unit Comparability axiom, letx, y ∈ X, � ∈ RN andN ∈ N satisfy

(x(N), x[N ])�(y(N), x[N ]) (35)

and

(x(N), x[N ]) + � ∈ X, (y(N), x[N ]) + � ∈ X. (36)

We claim thatI (x(N))�I (y(N)). For if I (x(N)) < I (y(N)), then by (3), we have(y(N), x[N ])
�U (x(N), x[N ]). Since �U is a subrelation to�, we must then have(y(N), x[N ]) �
(x(N), x[N ]), a contradiction to (35), which establishes our claim. Thus, we have

I (x(N) + �(N)) = I (x(N)) + I (�(N))�I (y(N)) + I (�(N)) = I (y(N) + �(N)) (37)

and

(I (x(N) + �(N)), x[N ] + �[N ])�(I (y(N) + �(N)), x[N ] + �[N ]) (38)

so that(x(N)+ �(N), x[N ]+ �[N ])�U(y(N)+ �(N), x[N ]+ �[N ]) by (2) and (36). Since�U

is a subrelation to�, we have(x(N)+�(N), x[N ]+�[N ])�(y(N)+�(N), x[N ]+�[N ]). Thus
(6) is satisfied, and the Partial Unit Comparability axiom is verified.
Sufficiency: Suppose a SWR� satisfies Axioms 1–3. We want to show that�U is a subrelation

to �. To this end, letx, y ∈ X, and supposex �U y. Then, by (1), there is someN ′ ∈ N, such
that(I (x(N ′)), x[N ′]) > (I (y(N ′)), y[N ′]). So, there isN�N ′ such that

I (x(N) > I (y(N) and x[N ])�y[N ])
We want to prove thatx � y. Denote[I (x(N)) − I (y(N))] by d; thend > 0. Define

di = (1 − yi)d/[N − I (y(N))] for i = 1, . . . , N.

Note that 0�di �(1 − yi) for i = 1, . . . , N , and
∑N

i=1 di = d. Now, definex′, y′, x ′′
, y

′′
as

follows: x′ = (x(N), y[N ]), y′ = (y1 + d1, . . . , yN + dN, y[N ]), x ′′ = (x(N),0[N ]), y ′′ =
(y1 + d1, . . . , yN + dN,0[N ]). Clearly,x′, y′ ∈ X andx

′′
, y

′′ ∈ X0.
Note that�(x

′′
) = �(y

′′
), since

N∑
i=1

(yi + di) =
N∑
i=1

yi + d =
N∑
i=1

yi + [I (x(N)) − I (y(N))] = I (x(N)). (39)

Using (39) and Lemma 1, we must havex
′′ ∼ y

′′
. Using the partial unit comparability axiom,

it follows thatx′ ∼ y′. By the Pareto Axiom, we obtainy′ � y, andx�x′. Thus, we must have
x � y by transitivity of�.

Now, letx, y ∈ X, and supposex�Uy. Then, by (1), there is someN ∈ N, such that

(I (x(N)), x[N ])�(I (y(N)), y[N ]).
We want to prove thatx�y. If in fact we have(I (x(N)), x[N ]) > (I (y(N)), y[N ]), thenx �U y,

so thatx � y must hold, as proved above, and we are done. So, we are left with the case in which
(I (x(N)), x[N ]) = (I (y(N)), y[N ]). In this case, definēx, ȳ as follows:x̄ = (x(N),0[N ]),
ȳ = (y(N),0[N ]). Clearly, x̄, ȳ ∈ X0. SinceI (x(N)) = I (y(N)), we have�(x̄) = �(ȳ)
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and by Lemma1, x̄ ∼ ȳ. Sincex[N ] = y[N ], the partial unit comparability axiom implies
thatx ∼ y. �

Proof of Theorem 2. (i) Suppose a SWR� satisfies Axioms 1–4. Letx, y ∈ X andx�Cy.
Then, by (14), there is̄N ∈ N such that

I (x(N))�I (y(N)) for all N�N̄ . (40)

Using (40) and (2), we get(x(N),0[N ])�U(y(N),0[N ]) for all N�N̄ . Thus, for eachN�N̄ ,
we have(x(N),0[N ])�(y(N),0[N ]) by using Theorem 1. Using Axiom 4(a), it follows that
x�y.

Next, letx, y ∈ X andx �C y. Then,x�Cy holds, buty�Cx does not hold. Usingx�Cy,

there isN̄ ∈ N such that (40) holds; further (40) must hold with strict inequality for a sub-
sequenceNs of N , otherwisey�Cx would also hold. Thus, using (2) and (3), we must have
(x(N),0[N ])�U(y(N),0[N ]) for all N�N̄ , with (x(Ns),0[Ns]) �U (y(Ns),0[Ns]) for the
subsequenceNs . Consequently, we have(x(N),0[N ])�(y(N),0[N ]) for eachN�N̄ , with
(x(N),0[N ]) � (y(N),0[N ]) for the subsequenceNs . Using Axiom 4(b), it follows thatx � y.

(ii) Suppose that the SWR�C is a subrelation to a SWR�. It can be verified, by following
the method used in the proof of Theorem 1, that the SWR� satisfies Axioms 1–3. We now check
Axiom 4 as follows.

(a) Supposex, y ∈ X and there isN̄ ∈ N, such that(x(N),0[N ])�(y(N),0[N ]) for allN�N̄ .
Pick anyN�N̄ . We claim that

I (x(N))�I (y(N)). (41)

For if (19) is violated, then(y(N),0[N ]) �U (x(N),0[N ]) by (3). Using Theorem 1, we obtain
(y(N),0[N ]) � (x(N),0[N ]), a contradiction. This establishes our claim (41). Using (41) and
(15), we getx�Cy, and since�C is a subrelation to�, we getx�y. This verifies Axiom 4(a).

(b) Supposex, y ∈ X and there isN̄ ∈ N, such that(x(N),0[N ])�(y(N),0[N ]) for all
N�N̄ , with (x(Ns),0[Ns]) � (y(Ns),0[Ns]) for a subsequenceNs of N�N̄ . Pick anyN�N̄ .
We can use the method used above to verify Axiom 4(a), to obtain (41), with strict inequality in
(41) holding for the subsequenceNs of N . By (16),x �C y holds and since�C is a subrelation
to �, we obtainx � y, verifying Axiom 4(b). �

Proof of Theorem 4. Our proof relies on the methods used in optimal growth theory,32 and it
proceeds in a number of steps,33 which we now describe.
Step1: Let {k̄t } be any maximal path fromko ∈ (0, k̄]. Then, using (F.1) and (U.3), it is a

standard exercise to check thatk̄t > 0 andc̄t > 0 for t�1. Further, for eacht�1, k̄t must solve
the following maximization problem:

Max u[f (k̄t−1) − k] + u[f (k) − k̄t+1]
s.t. 0�k�f (k̄t−1)

and f (k)� k̄t+1.




32 We rely here especially on the methods developed, for general models of intertemporal allocation, by Gale[18],
McKenzie[23] and Brock[8].

33 Some of the steps are very well-known in the literature, and are mentioned without further elaboration, to save space.
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Since c̄t > 0 and c̄t+1 > 0, the solution is an interior one, and so the following first-order
condition must hold

u′(c̄t ) = u′(c̄t+1)f
′(k̄t ) for t�1. (42)

Thus,{k̄t } is aRamsey–Euler path.
Define the price sequence{p̄t } by

p̄t = u′(c̄t ) for t�1, p̄0 = u′(c̄1)f
′(ko). (43)

Then, using the concavity and differentiability off andu, it is easy to check that fort�0

p̄t+1f (k̄t ) − p̄t k̄t � p̄t+1f (k) − p̄t k for all k�0,
u(c̄t ) − p̄t c̄t �u(c) − p̄t c for all c�0.

}
(44)

That is,{k̄t } is acompetitive path. Since{k̄t } is a maximal path, andu is increasing, there is no
path{k′

t } from ko satisfying

c′
t � c̄t for all t�1, and c′

t > c̄t for somet�1.

Thus,{k̄t } is anefficient path, and by the result of Brock[10], we have

lim inf
T→∞

T∑
t=1

[u(c′
t ) − u(c̄t )]�0 (45)

for every feasible path{k′
t } from ko.

Step2: Given the golden-rule stock̂k, defineĉ = f (k̂) − k̂; it is easy to check that̂c > 0. We
now come to a key concept in our demonstration, that of agood path. A feasible path{kt } is called
goodif there isG ∈ R andN ∈ N such that

T∑
t=1

[u(ct ) − u(ĉ)]�G for all T > N. (46)

It can be verified that there is a feasible path{k̃t } from ko andN ∈ N such thatk̃t = k̂ for all
t�N , and soc̃t+1 = ĉ for all t�N . This is clearly a good path fromko.
Step3: Next, define the golden-rule pricêp = u′(ĉ). Then, using the concavity and differen-

tiability of f andu, it can be verified that

p̂f (k̂) − p̂k̂� p̂f (k) − p̂k for all k�0,
u(ĉ) − p̂ĉ�u(c) − p̂c for all c�0.

}
(47)

Define� = {(k, k′) ∈ R2+ : k′ �f (k)} and a felicity functionw : � → R by w(k, k′) =
u(f (k) − k′). Then the condition (47) can be combined to yield fort�0

w(k̂, k̂)�w(k, k′) + p̂k′ − p̂k for all (k, k′) ∈ �. (48)

For (k, k′) ∈ �, denote[w(k̂, k̂)− {w(k, k′)+ p̂k′ − p̂k}] by �(k, k′). Then�(k, k′)�0 by (48).
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Step4: We now use (48) to establish an important characterization of good paths. Let{kt } be
any feasible path fromko. Then, noting that(kt , kt+1) ∈ � for t�0, and denoting�(kt , kt+1) by
�t for t�0, we have

{kt } is a good path iff
∞∑
t=0

�t < ∞. (49)

To see this, note that forT ∈ N

T∑
t=0

[w(kt , kt+1) − w(k̂, k̂)] =
T∑
t=0

[p̂kt − p̂kt+1] −
T∑
t=0

�t

= p̂ko − p̂kT+1 −
T∑
t=0

�t . (50)

If
∑∞

t=0 �t < ∞, then using (34), the right-hand side expression is bounded below by a real
number, independent ofT , and so{kt } is good. Conversely, if{kt } is good, then there isG ∈ R

such that the left-hand side of (50) is bounded below byG independent ofT , and so
∑T

t=0 �t is
bounded above by[p̂ko −G], independent ofT ; thus,

∑∞
t=0 �t < ∞ must hold. A consequence

of this characterization result is that if{kt } is a feasible path fromko, which isnot good, then
(using (50)):

T∑
t=0

[w(kt , kt+1) − w(k̂, k̂)] → −∞ asT → ∞. (51)

Step5: Part of the above characterization result leads to the basic asymptotic properties of good
paths. If{kt } is any good path fromko, then, noting that(kt , kt+1) ∈ � for t�0, and denoting
�(kt , kt+1) by �t for t�0, we have

(i) �t → 0 as t → ∞,

(ii ) (kt , ct ) → (k̂, ĉ) ast → ∞.

}
(52)

While (52)(i) follows directly from (49), (52)(ii) follows from (52)(i) and the “value-loss lemma”,
originally due to Radner [27], which we now proceed to discuss in the context of our framework.
Note thatw(k, k′), and therefore,�(k, k′) is continuous on�, and further that�(k, k′) > 0
whenever(k, k′) �= (k̂, k̂), by strict concavity off andu. For 0< ε < k̂, define the set

S(ε) = {(k, k′) ∈ � : k� k̄, k′ � k̄, and |k − k̂| + |k′ − k̂|�ε}.
Now,S(ε) is a non-empty, compact set inR2, and�(k, k′) is continuous onS(ε). So there is some
(k, k ′) ∈ S(ε), such that�(k, k′)��(k, k ′) for all (k, k′) ∈ S(ε). Denoting�(k, k ′) by �, we see
that� > 0, since(k, k ′) �= (k̂, k̂). Thus,�(k, k′)�� > 0 for all (k, k′) ∈ S(ε).

Applying the above “value-loss” result to(kt , kt+1) ∈ �, we must have(kt , kt+1) → (k̂, k̂) as
t → ∞, by (52)(i). It then follows thatct = f (kt−1) − kt → f (k̂) − k̂ = ĉ ast → ∞. This
establishes (52)(ii).
Step6: We now observe, using (45), that{k̄t } must be a good path fromko. For, if {k̄t } is not

a good path fromko, then noting that{k̃t } is a good path fromko, there isG ∈ R, andN ∈ N,
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such that, forT > N

T∑
t=0

[w(k̃t , k̃t+1) − w(k̄t , k̄t+1)] =
T∑
t=0

[w(k̃t , k̃t+1) − w(k̂, k̂)]

+
T∑
t=0

[w(k̂, k̂) − w(k̄t , k̄t+1)]

� G +
T∑
t=0

[w(k̂, k̂) − w(k̄t , k̄t+1)]. (53)

The expression in the third line of (53) goes to∞ asT → ∞ by using (51). Thus, the left-hand
side expression in the first line of (53) goes to∞ asT → ∞. But this would contradict the
property (45) already established for{k̄t }.
Step7: The conditions (44) can be combined to yield fort�0:

w(k̄t , k̄t+1) + p̄t+1k̄t+1 − p̄t k̄t �w(k, k′) + p̄t+1k
′ − p̄t k for all (k, k′) ∈ � (54)

a generalized profit-maximization property, at the prices{p̄t }. For (k, k′) ∈ �, denote[w(k̄t ,
k̄t+1)+ p̄t+1k̄t+1 − p̄t k̄t − {w(k, k′)+ p̄t+1k

′ − p̄t k}] byL(k, k′). ThenL(k, k′)�0 by (54). In
this final step, we use (54) to establish that{k̄t } overtakes every other feasible path fromko. Let
{k′
t } be any feasible path fromko, which is distinct from{k̄t }. Noting that(k′

t , k
′
t+1) ∈ � for t�0,

denoteL(kt , kt+1) byL′
t for t�0. Let� be the first period when the paths differ; that is,k′

� �= k̄�,
but k′

t = k̄t for t = 0, . . . , � − 1. Then,c′
� �= c̄�, and so by using the strict concavity ofu, we

would getL′
� > 0. We now consider two cases (i){k′

t } is not good; (ii){k′
t } is good. In case (i),

we write forT ∈ N

T∑
t=0

[w(k′
t , k

′
t+1) − w(k̄t , k̄t+1)] =

T∑
t=0

[w(k′
t , k

′
t+1) − w(k̂, k̂)]

+
T∑
t=0

[w(k̂, k̂) − w(k̄t , k̄t+1)] (55)

and note that since{k̄t } is good, the second expression on the right-hand side of (55) is bounded
above, independent ofT , while since{k′

t } is not good, the first expression on the right-hand side
of (55) goes to−∞ asT → ∞, by (51). Thus, the left-hand side expression of (55) must go−∞
asT → ∞. Consequently,{k̄t } overtakes{k′

t }.
In case (ii), we have forT ∈ N, with T > �:

T∑
t=0

[w(k′
t , k

′
t+1) − w(k̄t , k̄t+1)] =

T∑
t=0

[p̄t k′
t − p̄t+1k

′
t+1]

−
T∑
t=0

[p̄t k̄t − p̄t+1k̄t+1] −
T∑
t=0

Lt

= [p̄t+1k̄t+1 − p̄t+1k
′
t+1] −

T∑
t=0

Lt

� [p̄t+1k̄t+1 − p̄t+1k
′
t+1] − L�. (56)
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Now, since{k̄t } and{k′
t } are both good, we havek′

t → k̂, k̄t → k̂ ast → ∞, and further̄ct → ĉ

ast → ∞, by (52), so thatp̄(t) = u′(c̄t ) → u′(ĉ) = p̂ ast → ∞. Thus, there isN > �, such
that for allT > N , we have

[p̄t+1k̄t+1 − p̄t+1k
′
t+1] < (L�/2). (57)

Then, using (56) and (57), we have for allT > N ,

T∑
t=0

[w(k′
t , k

′
t+1) − w(k̄t , k̄t+1)] < −(L�/2)

so that{k̄t } overtakes{k′
t }. �
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