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Abstract: In the theory of fuzzy sets, it is usual to represent 
the 'degree of belongingness' by a number lying between 0 
and 1. This paper develops an alternative framework which 
dispenses with such cardinal numerical representations of the 
degree of belongingness, and relies, instead, on an ordinal 
formulation. The ordinal notion of a vague set is called a soft 
set. Soft sets are shown to have a tight logical relation with 
the concept of L-sets introduced earlier by Goguen. The 
paper also discusses applications of the framework of soft 
sets to several problems in the theory of choice. 

Keywords: Soft set; ordinal notion of the degree of 
belongingness; vague preferences; theory of choice; con- 
sumers' choice; expenditure minimization; preference 
maximization. 

1. Introduction 

Our thinking and our everyday language often 
involve many vague concepts, and the pre- 
ferences underlying many of our actions are also 
often vague. Over the last few decades, the 
theory of fuzzy sets has been widely used for 
modelling vague concepts in systems analysis, 
social sciences and artificial intelligence (for a 
very lucid survey of this literature, see [6]). 
While the contribution of the theory of fuzzy sets 
has been fundamental in all these areas, the use 

of numerical representations of the 'degree of 
belongingness', and the cardinal (as distingu- 
ished from the purely ordinal) aspects of such 
numerical representations, constitute a some- 
what restrictive feature in several contexts. 
Without denying the obvious importance of the 
elegant theory that has been developed on the 
basis of the cardinal numerical representation of 
the 'degree of belongingness', we feel that there 
are intuitively persuasive reasons, especially in 
many areas of the social sciences, for an 
alternative framework. In this paper, we 
introduce such a framework; we call it the soft 
set theoretic structure, and we investigate its 
formal relations with an earlier ordinal frame- 
work due to Goguen [8]. We show that, despite 
the austere informational basis of the ordinal 
formulations, they have important applications. 
We discuss a few applications of our notion of 
soft sets to the economic theory of consumers' 
choice and the more abstract theory of 
preference and choice in general. We believe 
that not only ordinal formulations of vagueness 
are logically less demanding than the traditional 
numerical formulation, and, therefore, concep- 
tually more satisfactory in many areas where 
numerical representations may seem overly 
precise, but, also, despite their informational 
parsimony, the ordinal formulations have 
sufficient power to be useful in tackling a wide 
range of problems. 

The outline of the paper is as follows. In 
Section 2 we discuss the intuitive reasons for 
preferring an ordinal formulation of vagueness in 
certain fields. In Section 3 we define soft sets and 
distinguish between alternative types of soft set 
theoretic structures. In Section 4 we recall the 
concept of L-sets originally due to Goguen [8]. 
In Section 5 we show that, despite the different 
formal structures of our soft sets and Goguen's 
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L-sets, there exists a tight logical connection 
between the two structures. In Section 6 we 
discuss some applications of the notion of soft 
sets and soft binary relations to the general 
theory of choice and also to the economic theory 
of consumers' choice. Section 7 briefly concludes 
the paper. 

2. The case for an ordinal framework 

To see some of the limitations of the 
formulation of vagueness in the standard theory 
of fuzzy sets, consider a specific vague concept, 
say, the concept of redness. Clearly, the set of 
red objects is not well defined. That is, we may 
not be able to say definitely, for each object, 
whether it is red or not red. Certain pink or 
orange objects, for instance, could cause 
difficulties. Ordinary fuzzy sets seek to capture 
this vagueness by attaching a number between 
zero and one to each object; this number 
represents the e x t e n t  to which the object is red. 
While this helps to break out of the rigid, 
dichotomous classification system of conven- 
tional set theory, it leads to other conceptual 
difficulties. 

First, a numerical representation of the extent 
to which different objects are red seems to be 
rather strong in its informational content. It 
seems to go against the vagueness of the concept 
involved here, if the numbers are assumed to 
have any greater significance than the implied 
ranking. It is essentially this type of objection 
which Urquhart [21, p. 108], among others, 
seems to be voicing when he writes: 

One immediate objection which presents itself to 
this line of approach is the extremely artificial 
nature of the attaching of precise numerical values 
to sentences like '73 is a large number' or 'Picasso's 
Guernica is beautiful'. In fact, it seems plausible to 
say that the nature of vague predicates precludes 
attaching precise numerical values just as much as it 
precludes attaching precise classical truth values. 

Note that, if the numerical representation of 
the different degrees to which different objects 
are red is no more than just a convenient way of 
representing the ordering of these different 
degrees of redness (for a discussion of the 
problem of representing orderings in terms of 

real numbers, see [5]), then there would not be 
anything unique about any given numerical 
representation. If any given numerical repre- 
sentation does the job of representing the 
ordering, then so would any positive monotonic 
transformation of that numerical representation. 
To use the terminology common in economics, 
the numerical representation in such cases would 
be purely ordinal, without any cardinal sig- 
nificance whatsoever. However, it is our 
understanding that, in the standard theory of 
fuzzy sets as well as in its applications, numerical 
degrees of membership are often treated as fully 
cardinal. Crucial use is made of the cardinal 
features of the numbers involved, with the 
consequence that the structure of the theory and 
the conclusions are not necessarily invariant with 
respect to an arbitrary positive monotonic 
transformation of the specific numerical repre- 
sentations used. To cite just one example, the 
property of connectedness, as defined for a fuzzy 
binary relation, requires that the number 
representing the degree to which an ordered pair 
(x, y) belongs to the fuzzy binary relation and 
the corresponding number for the ordered pair 
(y, x) should add up to a number not less than 1. 
Clearly, this definition uses more information 
than just the ordering of the degrees to which 
different ordered pairs belong to the fuzzy binary 
relation under consideration. Indeed, in the 
purely ordinal framework it is not clear what it 
means to require that the sum of two numbers 
attached to two different ordered pairs should 
not be less than 1, since, even if it may be true 
under one numerical representation, it will not 
be generally true under an arbitrary positive 
monotonic transformation of that numerical 
representation. 

It is not our intention to deny the case for the 
cardinal formulation of vagueness in many 
contexts. The cardinal formulation, though more 
demanding in its informational requirement, 
may often yield a richer theory than the more 
Spartan ordinal framework. We only want to 
make a weaker claim that in some cases, 
especially in the theory of preference and choice, 
the cardinal formulation of vagueness seems to 
impose an excessively precise structure on the 
notion of the degree to which an object belongs 
to the vague set under consideration. Even this 
weak claim, if accepted, provides considerable 
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motivation for exploring alternative frameworks 
for discussing vague concepts, which dispense 
with numerical representations of the 'degree of 
belongingness', and which rely, instead, on the 
conceptually more primitive notion of whether 
an object possesses some vague property to a 
greater or smaller extent than another object. 

The theory of fuzzy sets also raises a second 
type of intuitive problem as far as it implies a 
very strong 'completeness' axiom. It entails that, 
for any two objects, x and y, and for any two 
vague sets A and B, we can compare the extent 
to which x belongs to A and the extent to which 
y belongs to B. Sometimes, this may be, 
intuitively, too strong an assumption. Consider 
two vague sets: the set of round objects and the 
set of red objects. While it may be reasonable to 
assume comparability of the extents to which 
different objects are round, and also to assume 
comparability of the extents to which different 
objects are red, it may not be equally reasonable 
to build into the formal framework the 
comparability of the degree to which an object is 
round and the degree to which an object is red. 
The theory of fuzzy sets implies this type of 
comparison of the 'degrees of belongingness' 
with respect to different sets, and, from an 
intuitive point of view, this seems to be 
excessively rigid. It would seem desirable to 
have a structure which does not imply that all 
such comparisons across different sets can be 
made, though, of course, it would be desirable 
to have a sufficiently flexible formal structure 
which permits such comparisons across sets. 

Finally, it is also of considerable formal 
interest to see how much of our intuition about 
vague concepts can be captured by a concep- 
tually more economical framework. If, for 
certain modelling purposes, the weaker ordinal 
formulation proves to be adequate, then, by the 
principle of Occam's razor, it would seem 
undesirable to use, for these purposes at least, 
the cardinal formulation, even though for other 
purposes, the richer cardinal formulation may 
turn out to be more fruitful. The similarity of all 
this discussion to the cardinal utility versus 
ordinal utility debate in economics is obvious. 
Even though the concept of cardinal utility 
continues to be useful and important in the 
normative fields of welfare economics and the 
theory of social choice, the positive economic 
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theory of consumers' choice has opted for the 
much weaker ordinal utility formulation since 
the weaker concept proves to be adequate for all 
the purposes of such positive theory. 

3. Soft sets 

Throughout this paper, when we use the terms 
'set', 'binary relation' or 'function', without 
using any adjective such as 'fuzzy' 'soft', etc., it 
is to be understood that we are referring to a 
crisp set or a crisp binary relation or a crisp 
function. 

Let X be the (crisp) universal set, assumed to 
be nonempty; and let 2 x be the power set of X. 

Definition 3.1. (1) A soft set theoretic structure 
(SST) is an ordered triple (~p, g, >~ } such that 

~p is a nonempty set with # lp ~> #2x ;  (3.1) 

g is a one to one function from 2 x to lp; (3.2) 

~> is a reflexive and transitive binary 

relation on X × ~p (3.3) 

(with > and - denoting respectively the 
asymmetric and symmetric factors of ~) .  

For a l l A • ~ p , x , y , z • X ,  a n d B • 2  x , i f x • B  
and y • X - B, then 

(x, g(B)) ~ (y, A) ~ (y, g(B)) and 

(x, g(B)) > (y, g(B)). (3.4) 

The elements of ~p are called soft sets. 
(2) An SST ( ~p, g, ~ } is proper iff for all soft 

sets A • ~p, the restriction of ~ to X x {A} is 
connected (i.e., it is an ordering). 

(3) Given an SST (~p, g, ~} ,  two soft sets 
A, B • ~p are said to be identical (denoted as 
A -= B) iff for all x, y • X for all D • ~p, 

[(x, A) ~ (y, D) iff (x, B) ~ (y, D)] (3.5a) 

and 

[(y, D) ~ (x, A) iff (y, D) ~ (x, B)]. (3.5b) 

Remark 3.2. (1) Let (~p, g, ~ ) be a given SST. 
Then g identifies the exact sets in the set ~p of 
soft sets. Thus, for all A e 2  x, g(A) can be 
interpreted to be the exact set A as it figures in 
the SST ~p. For all x, y e X  and A, Be~p,  
' ( x , A ) ~ ( y , B ) '  is to be interpreted as 'x 
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belongs to A to an extent which is at least as 
great as the extent to which y belongs to B'. 
Note that ~ has not been assumed to be 
connected over X ×  ~p; on this point, see 
Remark 3.2.4. 

(2) Intuitively, (3.4) implies that the extent to 
which an element x of X belongs to a soft set 
always lies (in a weak sense) between 'belonging 
definitely' and 'definitely not belonging'. 

(3) If the SST is proper then it is always 
possible to compare the extent to which the 
different members of X belong to a given soft 
set, even though it may not be possible to 
compare the extent to which a member  of X 
belongs to one soft set with the extent to which 
the same or a different member  of X belongs to 
a different soft set. 

(4) Definition 3.1(3) essentially seems to 
capture the idea that if all members of X belong 
to two soft sets in 'exactly the same way',  then 
the two soft sets are indistinguishable ('identi- 
cal'). Given that ~> is reflexive, from Definition 
3.1(3) it follows that if two soft sets, A and B, 
are identical, then for all x • X, (x, A) - (x, B). 

Definition 3.3. Let (% g, ~)  be an SST. 
(1) The SST is of Type I iff for all x, y • X and 

A , B • %  

[(x, A) ~ (y, B)] 

implies 

[(x, A) ~ (x, g( X) ) 

or (y, g(B)) ~ (y, g(q~)) or A -= B]. 

In this case, all soft sets in ~p are called Type I 
soft sets. 

(2) The SST is of Type H iff for all x, y • X 
and A , B • ~ ,  [(x, A) ~> (y, B) or (y ,B)~> 
(x, A)]. In this case all soft sets in ~g are called 
Type II soft sets (see Definition 3.1). 

Remark 3.4. SSTs of Type I and SSTs of Type 
II represent two extreme cases. If an SST is of 
Type I, then for nonidentical soft sets A and B, 
it is not possible to compare the extent to which 
x belongs to A with the extent to which y 
belongs to B unless the comparison is trivial, i.e. 
unless x definitely belongs to A or x is definitely 
excluded from A or y definitely belongs to B or y 
is definitely excluded from B. On the other hand 

all such comparisons across different soft sets (in 
addition to comparisons for the same soft set) 
are possible if the SST is of Type II. The type of 
SST that one would like to use would, of course, 
depend on the intuitive assumptions underlying 
the specific problem under consideration. 
Suppose we have an object x which is neither 
'definitely red' nor 'definitely nonred'.  Similarly, 
suppose we have another object which is neither 
'definitely yellow' nor 'definitely nonyellow'. 
Then, whether one would like to permit 
comparison of the degree to which x is red with 
the degree to which y is yellow would depend on 
the intuitive context, and it is this intuition which 
would dictate the type of SST one would like to 
use for the purpose of modelling. It is, of course, 
obvious that one need not use either of the polar 
types introduced in Definition 3.3; instead, one 
may choose a hybrid type where some, but not 
all, nontrivial comparisons across different soft 
sets are permitted. 

Definition 3.5. Let ( %  g, ~)  be a proper SST. 
Then (% g, >~) is said to be complete iff for 
every A • [~/, - {g(X), g(q~)}], for every x • X 
and for every ordering T over 

(X x {A}) U {(x, g(X)), (x, g(~b))}, 

such that (x, g(X)) is a T-greatest element of 

( x  × (A)) u ((x, g(x)),  (x, g(q,))} 

and (x, g(tp)) is a T-least element of 

(X x {a})  U {(x, g(X)), (x, g(qb))}, 

there exists B • ~p such that for all y, z • X, 

[(y, A) T (z, A) iff (y, B) ~ (z, B)]; 

[(x, g(X)) T (y, A) iff (x, g(X)) ~ (y, B)]; 

[(y, A) T (x, g(X)) iff (y, B) ~> (x, g(X))] ;  

[(x, g(q~)) T (y, A) iff (x, g(q~)) ~ (y, B)]; 

and 

[(y, A) T (x, g(~b)) iff (y, B) ~ (x, g(q~))] 

(see Definition 3.1). 

Remark 3.6. If a proper SST ( % g, ~>) of Type 
I is complete, then it would not be possible to 
'expand' the SST by 'additing' to ~/, a soft set 
which is not identical to one of the soft sets 
already in ~p. 



K. Basu et al. / Soft sets 49 

Notation 3.7. Let (W, g, >~) be a given SST. 
Then POP) denotes the cardinality of an exact 
subset lp* of ~ such that for all A • ~p, there 
exists B e  ~p* such that A=-B,  and for all 
A, B • ap*, not (A -= B). 

Notation 3.8. Let z ( X )  denote the set of all 
ordered nontrivial partitions of X. (Nontriviality 
excludes the partition {X, tp} from z ( X ) . )  

The proof of the following proposition is 
straightforward and is therefore omitted. 

Proposition 3.9. Suppose X is a finite set, and 
suppose ( ~p, g, >~) is a proper SST o f  Type I. 
Then p(~p) <<- 4 ( # z ( X ) )  + 3. Further, if ( ~p, g, >~ ) 
is also complete, then p(~p)= 4 ( # : r ( X ) ) +  3 (see 
Definitions 3.1 and 3.2, and Notations 3.7 and 
3.8). 

4. L-Sets 

In this section, we recall the notion of L-sets 
which is due to Goguen [8]. 

Definition 4.1. (1) An L-set theoretic structure 
on X (LST) is an ordered triple (~, ~>., L) 
where L is a nonempty set with #L~>2;  ~>. is a 
reflexive, transitive and antisymmetric binary 
relation over L; ~ is a nonempty set of functions 
from X to L; there exist a unique ~>.-greatest 
element a in L and a unique ~>.-least element _d 
in L; and for all A • 2 x, there exists f • e such 
that for all x e A ,  f ( x ) = d ,  and for all 
y • X - A,  f ( y )  = _d. The element of ~ are called 
L-sets. 

(2) An LST (~, ~ . ,  L)  is proper iff for every 
f e~ ,  the restriction of >~, to f ( X )  is an 
ordering. 

(3) An LST (~, ~ , ,  L)  is complete iff ~ is the 
set of all possible functions from X to L. 

(4) An LST (~, ~>,, L)  is normal iff L is a 
lattice under the meet and joint operations 
induced by ~>, on L. 

possible to compare the extents to which any two 
elements of X belong to any given L-set in the 
LST. 

5. The relation between soft set theoretic 
structures and L-set theoretic structures 

In this section we explore the close logical 
relation that exists between SSTs on the one 
hand and LSTs on the other. 

Notation 5.1. s t  denotes the set of all SSTs and 
denotes the set of all LSTs. 

Notation 5.2. (1) Let T, denote a function from 
~/ to ~ ,  defined as follows. For every 
( ~ p , g , ~ > ) e ~ ,  let T~((~p,g,>~)) be (E, (~>.), 
Q)  where 

Q is the set of equivalence classes induced by - ,  
the symmetric component  of ~>; (5.1) 

(~>,) is a reflexive, transitive and anti- 
symmetric binary relation on Q such that for all 
q , q ' • Q ,  

q(>~,)q' iff for all (x, A) • q and all 

(x', A ' )  • q' ,  (x, A) ~ (x', A') ;  (5.2) 

E is the set of all functions e : X ~ Q such that 
for some A • ~p, 

for all x • X, e(x) = [(x, A)], (5.3) 

where [(x, A)] is the equivalence class of (x, A) 
in Q. 

(2) Let Ta be a function from ~ to s¢ defined 
as follows. For every ( ~ , ~ > . , L ) • ~ ,  let 
Tt~(( ~, >~., L~) be (~ ,h ,  (~>)), where h is a 
one-to-one function from 2 x to ~ such that for all 
A • 2 x, for all x • A, and for all y • (X - A), 

h(A)(x) is the unique ~>.-greatest element in 

L and h(A)(y)  is the unique ~>,-least 

element in L; (5.4) 

Remark 4.2. (1) Intuitively, L is the set of all 
possible 'degrees of belongingness', d 
corresponds to the notion of 'definitely belong- 
ing' and _d corresponds to the notion of 
'definitely not belonging'. 

(2) Intuitively again, the LST is proper iff it is 

and (~>) is a reflexive and transitive binary 
relation over X × ~ such that for all x, x ' • X  
and all f, f '  • ~, 

(x, f)(>~)(x', f ' )  iff f (x )  >~, f ' (x ' ) .  (5.5) 
(See Notation 5.1.) 
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Definition 5.3. (1) For all (~p,g, ~ ) ,  (~p' ,g ' ,  
~>') • ~ ,  an S-morphism is a one-to-one and 
onto function S from ~p to ~p' such that for all x, 
y • X  and all A,B•~O. ( x , A ) ~ ( y , B )  iff 
(x, S(A)) ~'  (y, S(B)). If such an S-morphism 
exists, then (~p, g, ~>) and ( ~p', g ' ,  ~ ' )  are said 
to be S-morphic. 

(2) For all (~, ~ . ,  L),  (~',  ~ ,  L ' )  • ~,  an 
L-morphism is a one-to-one and onto function 1 
from ~ to ~' such that for all x, y • X, and all 
f , f ' • ~ ,  

f ( x )~ ,  f ' (y)  iff (l(f))(x)~, (l(f'))(y). 

If such an L-morphism exists, then (~, ~ , ,  L) 
and (~', ~ , ,  L ' )  are said to be L-morphic (see 
Notation 5.1). 

Remark 5.4. S-morphic (resp. L-morphic) SSTs 
(resp. LSTs) are essentially the same except for 
possible renaming of the soft sets (L-sets). 

Remark 5.5. 'Being S-morphic to' (resp. 'being 
L-morphic to') is an equivalence relation on 
(resp. 9~). 

Notation 5.6. Let the set of equivalence classes 
generated by the equivalence relation 'being 
S-morphic to' (resp. 'being L-morphic to') 

defined over M (resp. ~ )  be denoted by E q ( J )  
(resp. Eq(~)) .  Let a~ be a function from ~ to 
Eq(M) such that for all 0 • s~, o~(0) = [0] where 
[0] denotes the equivalence class of 0, defined 
by the equivalence relation 'being S-morphic to' 
over M. Similarly, let fl be a function from ~ to 
Eq(~)  such that for all 6 • ~, fl(6) = [6] where 
[6] denotes the equivalence class of 6, defined 
by the equivalence relation 'being L-morphic to' 
over ~ (see Notation 5.1 and Definition 5.3). 

The following proposition is obvious. 

Proposition 5.7. Let O, O' • ~l and 6, 6' • ~. 
Then 0 and O' are S-morphic iff T~(O) and 
T~(O') are L-morphic. Also, 6 and 6' are 
L-morphic iff Ta(6 ) and T~(6') are S-morphic 
(see Notations 5.1 and 5.2 and Definition 5.3). 

Notation 5.8. In view of Proposition 5.7, we can 
introduce a mapping T~ from Eq(M) to Eq(~) ,  
and also a mapping ~ from Eq(~)  to Eq(M) as 
follows: (i) for all a • Eq(M), T~(a) = fl(T~(O)) 
for some O•a; and (ii) for all b e E q ( ~ ) ,  
T,(b) = a~(T,(6)) for some 6 • b (see Notations 
5.1, 5.2 and 5.6). 

The logical relation that exists between SSTs 

zq(/~ ) 

I .................. .................. I 

Eq(~ ) 

Fig. 1. Relation between SSTs and LSTs. 
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on the one hand and LSTs on the other can now 
be summarized in terms of the diagram shown in 
Figure 1. 

an SBR R over X, which satisfies: 
(a) reflexivity: for all x ~ X, 

R(x, x) ~ R(x, x); (6.1) 

6. Some applications of soft set theoretic 
structures to the theory of choice 

In view of the close logical relation between 
SSTs and LSTs, demonstrated in the preceding 
section, it is clear that whether we choose to 
work in the framework of SSTs or in the 
framework of LSTs is mainly a matter of 
convenience in the context of the specific 
problem under consideration. In this section we 
discuss some applications of SSTs to several 
problems in the theory of choice on the basis of 
vague preferences. 

Some of the intuitive issues explored in this 
section have been discussed earlier in the 
cardinal framework of standard fuzzy set theory; 
see, for example, Basu [4], Dutta et al. [7] and 
Panda and Patanaik [13]. For discussion, again 
in the cardinal fuzzy set theoretic framework, of 
other related problems, see Orlovsky [11], 
Ovchinnikov [12], Switalski [20], Barrett and 
Pattanaik [2] and Barrett et al. [3] among others. 

Definition 6.1. Let (g2, q, >~) be a proper and 
complete SST on  X 2. Each soft set in g2 will be 
called a soft binary relation (SBR) over X. An 
exact soft binary relation (ESBR) over X is an 
SBR R such that R = q(Y) for some exact subset 
Y of X 2 (see Definitions 3.1, 3.3 and 3.5). 

(b) connectedness: for all distinct x, y c X, if 
R(y, x) ~ _R(x, x), then 

R(x, y) ~ R(x, x); (6.2) 

(c) max-rain transitivity: for all x, y, z c X, 

R(x, z) >~ m({R(x, y), R(y,  z)}). (6.3) 

An exact soft ordering (ESO) over X is an 
ESBR which satisfies (6.1), (6.2) and (6.3) (see 
Definition 6.1 and Notations 6.3 and 6.4). 

In Proposition 6.6, we note a property of soft 
orderings which will be useful later. 

Proposition 6.6. Let R be a soft ordering over X. 
For all, x, y, z e X, if 

[R(x, y) ~ R(x, x)& 

R(y, x) ~ _R(x, x) & (y, z) > _R(x, x)], 

then 

[R(x, z) ~ R(x, x) & R(z, x) ~ _R(x, x)]; 

and if 

[R(x, y) > _R(x, x) 

& R(y ,  z)  ~ g(x,  x) & R(z ,  y)  ~ _R(x, x)], 
then 

[n(x, z) ~ R(x, x) & R(z, x) ~ _R(x, x)]. 

Remark 6.2. It is obvious that if R is an ESBR, 
then, for all x, y e X, either R(x, y) 
(q(X2)(x, x) or g(x, y) ~ (q(cp))(x, x). It is also 
clear that an ESBR is essentially an exact binary 
relation redefined in the framework of soft sets. 

Notation 6.3. To economise notation, for all 
R e g2, and all (x, y) ~ X 2, we write R(x, y) 
rather than ((x, y), R). Also we denote q(X z) by 
/~ and q(q~) by _R. 

Notation 6.4. Let J ~ X  2. If there exists a 
greatest lower bound (defined in terms of ~)  of 
J, then we let it be denoted by re(J). 

Definition 6.5. A soft ordering (SO) over X, is 

Proof. Let 

[R(x, y) ~ R(x, x) 

& R(y,  x) ~ _R(x, x) & R(y,  z) > _R(x, x)]. 

Suppose R(z, x) > R(x, x). Then, from 
R(y, z) > _R(x, x), by max-min transitivity, it 
follows that R(y, x) > _R(x, x). This contradicts 
[R(y,x)-_R(x,x)] .  Hence, we must have 
R(z, x)-_R(x,  x). Therefore, from the connec- 
tedness of R, R(x, z) ~ R(x, x). The second part 
of the proposition can be proved similarly. [] 

Whenever we shall need to consider an agent's 
vague preferences over X, those vague pre- 
ferences will be formally represented by a soft 
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ordering R over X, defined with reference to a 
given proper and complete SST (I2, q, 9) on 
X 2. The interpretation of [R(x, y) >~ R(z, w)] 
will be that the extent to which (x, y) belongs to 
R (i.e., the extent to which x is at least as good 
as y) is at least as great as the extent to which 
(z, w) belongs to R (i.e., the extent to which z is 
at least as good as w). 

Since we shall discuss the choices made by the 
agent, we introduce the notion of the agents's 
choice function which seeks to formalize the 
choice behaviour of the agent. 

Definition 6.7. A choice function is a function 
C:K--~2 ×, such that 0:/: K ~_ (2 × - {0}) and, for 
all A • K, f) ~: C(A) ~_ A. A choice function is 
said to be unrestricted iff its domain is the set of 
all nonempty subsets of X. 

Remark 6.8. Intuitively, C(A) denotes the set of 
alternatives 'chosen' when A is the set of 
available alternatives. K represents the set of 
'choice problems' of the agent, which are under 
consideration. 

In the rest of this section, C denotes the 
agents's choice function. The domain of the 
choice function will be denoted by K. 

One problem, which has received con- 
siderable attention in the theory of exact 
preferences and choice (see, for example, Arrow 
[1], Herzberger [9], Houthakker  [10], Richter 
[14, 16] and Sen [17]), is the problem of whether 
the agent's choices can be explained or 
'rationalized' in terms of a crisp ordering (note 
that, in our framework, a crisp ordering is 
accommodated as an exact soft ordering). One 
can pose a similar problem in the context of soft 
preferences: given the agent's choice function C, 
one can ask whether there exists a soft ordering 
which can induce C in some plausible sense. 
However, here we face a conceptual problem. 
There is an intuitively obvious sense in which 
one can think of the choice function as being 
rationalizable in terms of an exact soft ordering: 
given an exact soft ordering R and the choice 
function C, C is said to be rationalizable in terms 
of R (or, induced by R) iff for all A c K ,  
C(A)={x•A  IR(x,y)=R(x,x)  for all yeA} .  
Unfortunately, in the case of nonexact soft 
orderings, there is no such straightforward 

/ Soft sets 

notion of rationalizability of the choice function. 
If the soft ordering R is nonexact, then there are 
several different notions of rationalizability of 
the choice function in terms of R, and none of 
these seems to be obviously more plausible than 
the others. Thus, when the soft orderings are not 
constrained to be exact, one can think of several 
alterative assumptions about the choice function 
C, each of which corresponds to some notion of 
the rationalizability of C in terms of a soft 
ordering. We consider three such asssumptions 
below. 

Note that in judging the relative intuitive 
appeal of these alternative notions of rationaliz- 
ability in terms of soft preferences, it would be 
important to have axiomatizations, similar to the 
axiomatizations in the 'rationalizability litera- 
ture' on crisp preferences and choice (see, for 
example, Arrow [1], Herzberger [9], Houthak- 
ker [10], Richter [14, 15, 16], Sen [17] and 
Suzumura [19]). This, however, needs detailed 
independent investigation. 

Notation 6.9. Let R be a given soft ordering 
over X. Then, for all x*, y* • X, let 

Hi(A, R, x*, y*) = {x • X ] for all y • A ,  

R(x, y) >~ n(x*, y*)}; 

and let 

HZ(A, R) = {x • A I for all y • A, 

R(x, y)>~ R(y,x)}. 

Lastly let 

H3(A, R)= {x •A  lm({x} x A)>~ m({y} × A) 

for all y • A, 

and m({x} x A) >- _R(x, x)}, 

if, for all x • X, there exists a greatest lower 
bound of {x} x A, defined in terms of ~>. If for 
some x • X, there does not exist a greatest lower 
bound of {x} x A, defined in terms of ~ ,  then 
let n3(m, R) denote 0. 

Assumption 6.10. There exists a soft ordering 
such that for some (x*, y*) • X 2, R(x*, y*) > 
_R(x*, y*), and for all A • K, 

C(A) -- Hi(A, R, x*, y*). (6.4) 

(See Notation 6.9.) 
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Assumption 6.11. These exists a soft ordering R 
such that for all A c K, 

C(A) = H2(A, R). (6.5) 

(See Notation 6.9.) 

Assumption 6.12. There exists a soft ordering R 
such that for all A e K, 

C(A) = H3(A, R). (6.6) 

(See Notation 6.9.) 

Remark 6.13. Given a soft ordering R, (6.4) 
represents a principle of 'satisficing' (see [18] for 
a discussion of 'satisficing'). If (6.4) holds, then, 
intuitively, the agent fixes a pair of alternatives 
(x*, y*) such that R(x*, y*) > _R(x*, x*). Then, 
given a feasible set of alternatives, A, the agent 
chooses all those alternatives x in A, such that, 
for all y c A, the extent to which x is at least as 
good as y is at least as great as the extent to 
which x* is at least as good as y*. The extent to 
which x* is at least as good as y* sets the level 
with reference to which 'satisficing' takes place. 
Note that a stringent application of this type of 
choice rule arises when R(x* , y* )~R(x* , y* ) ,  
i.e. when x* is definitely at least as good as y*. 
Equation (6.5) refers to a simple form of binary 
comparisons. Given A c K, x c A is chosen if 
and only if, for all y c A, the extent to which x is 
at least as good as y is at least as great as the 
extent to which y is at least as good as x. 
Equation (6.6) embodies a type of max-min 
principle. 

Note that since, by the definition of the choice 
function C, C ( A ) ~ 0  for all A c K, and since, 
for all A c K and all x e A, if there does not exist 
a greatest lower bound (defined in terms of ~>) 
of the set {x} × A, then Ha(A, R) = 0, it is clear 
that (6.6) can hold only if, for all A c K and all 
x cA ,  there exists a greatest lower bound of 
{x} x A (in terms of ~>). If the set is finite, then 
this condition is clearly fulfilled. However, when 
the feasible set of alternatives can have an 
infinite number of elements (as in the theory of 
consumers' choice discussed below), additional 
assumptions may be required to ensure that this 
condition is fulfilled. 

Proposition 6.14. Suppose the choice function of 
the agent is unrestricted. Then the agent satisfies 

Assumption 6.10 iff there exists an exact soft 
ordering R' such that for all A c K, (C(A)= 
{ x ~ A l R ' ( x , y ) - f ~ ( x , x  ) for all y e A }  (see 
Definition 6.7). 

Proof. The sufficiency part of the proof is 
obvious. To prove the necessity part, suppose 
there exists x*, y * e X  and a soft ordering R 
such that R(x*,y*)>_R(x*,y*) and for all 
A c K, (6.4) holds. Then define an exact soft 
binary relation R '  as follows: for all x, y c K, 

R'(x, y) ~ [~(x, x) iff R(x, y) ~ R(x*, y*) 

and 

R'(x, y) ~ _R(x, y) iff R(x*, y*) > R(x, y). 

Given that R is reflexive, for all x c X ,  
R ( x , x ) ~  R(x*, y*), and hence R'(x ,x )  
/~(x, x). Thus, R'  is reflexive. For all x, y e X, 
since {x, y} c K, either R(x, y) ~ R(x*, y*) or 
R(y, x) >~ R(x*, y*). Hence either R'(x, y) 
R(x ,x)  or R ' ( y , x ) - R ( x , x ) .  Thus, R'  is 
connected. The max-min transitivity of R '  
follows directly from the definition of R '  and the 
max-min transitivity of R. Thus R'  is an exact 
soft ordering. All that remains to be shown is 
that for all A c K, 

{x c A  I R'(x, y) - R(x ,x )  for all y cA}  

= HI(A, R, x*, y*). 

However, this is obvious from the definition of 
R'. [] 

Proposition 6.15. The agent satisfies Assumption 
6.11 iff there exits an ESBR R' such that R'  
satisfies reflexivity (6.1), connectedness (6.2) and 
exact quasitransitivity : 

for all x, y, z c X, if 

[R'(x, y) ~ R(x, x) & R'(y,  x) ~ _R(x, x) 

& R '(y, z) - /~ (x ,  x) & R'(z,  y) - _R(x, x)], 

then 

[R'(x, z) ~ R(x, x) & R'(z, x) ~ _R(x, x)], (6.7) 

and for all A c K, 

C(A) = {x c A  ]for ally c A ,  

R'(x, y) - h ( x ,  x)}. 

Proof. (I) Necessity: Suppose the agent satisfies 
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Assumption 6.11. Define an ESBR R'  such that 
for all x, y • X, 

[R'(x, y) ~ R(x, x) iff R(x, y) ~ R(y, x)] 

and 

[R'(x, y) ~ _R(x, x) iff R(y, x) > R(x, y)]. 

Since the SST (g2, q, ~ )  over X 2 is proper, for 
all x, y • X, either R(x, y) >~ R(y, x) or 
R(y, x) ~ R(x, y). Hence, for all x, y • X, either 
R'(x, y) ~ R(x, x) or R'(y,  x) ~/~(x, x). There- 
fore, R'  is reflexive and connected. To show 
that R'  satisfies (6.7), suppose, for some 
x , y , z • X ,  

[R'(x, y) ~ R(x, x) & R'(y, x) ~ _R(x, x) 

& R'(y, z) ~ R(x, x) & R'(z, y) ~ _R(x, x)]. 

Then, by the definition of R', R(x ,y )> 
R ( y , x ) & R ( y ,  z )>R(z ,y ) .  We show that 
R(x ,z ) •R(z ,x ) .  Given that (g2, q , ~ )  is 
proper, either R(x, y) >~ R(y, z) or R(y, z) 
R(x, y). Suppose R(x, y) ~ R(y, z). Then, given 
the max-min transitivity of R, 

R(x, z) ~ m( {R(x, y), R(y, z)}) 

= R(y, z) :> R(z, y) 

>~ m((R(z, x), R(x, y)}). (6.8) 

If 

m({R(z, x), R(x, y)}) = R(x, y), 

then, from (6.8), we would have R(y, z ) >  
R(x, y), which would contradict our assumption 
that R(x, y) ~ R(y, z). Hence 

m({R(z, x), R(x, y)}) = R(z, x), 

and hence, by (6.8), we have R(x, z) > R(z, x). 
Similarly, it can be shown that when R(y, z)>~ 
R(x, y), we would again have R(x, z) > R(z, x). 
Thus in all cases, we have R(x, z )>R(z ,  x). 
Then it follows that R ' ( x , z ) - R ( x , x )  and 
R'(z ,x)-_R(x,x) .  Thus, R' satisfies (6.7). 
Consider any A e K. By Assumption 6.11, 
C(A) = H2(A, R), and, by the definition of R',  

H 2 ( A ,  R) = (x • A  I R'(x, y) ~ l~(x, x) 

for all y • A }. 

Hence 

C(A) = {x eA  I R'(x, y ) - R ( x ,  x) for all y cA}. 

This completes the proof of necessity. 
(II) Sufficiency: Suppose there exists an 

ESBR R'  which satisfies reflexivity, connected- 
ness and (6.7), and suppose that for all A ~ K, 

C(A) = {x e A I for all y e A, 

R'(x, y) - /~(x,  x)}. 

If for all z, w e X, R'(w, z) - /~(z ,  z), then it is 
clear that R'  satisfies max-rain transitivity and is 
a soft ordering, and that C(A)= H2(A, R') for 
all A e K. Suppose there exist z, w e X, such that 
not [R'(w, z) ~/~(z, z)]. Consider such z and w. 
Since R'  is an ESBR satisfying (6.2), it is clear 
that R'(z, w)~  R(z, z) and R'(w, z ) ~  _R(z, z). 
Construct an SBR R such that for all x e X, 
R(x, x) ~ R(x, x); /~(z, z) > R(z, w) > R(w, z) 
>_R(z,z); and for all distinct x, y e X ,  (if 
R'(x, y) ~ (R(x, x) and R'(y,  x) ~ _R(x, x), then 
R(x, y) - R(z, w) and R(y, x) ~ R(w, z)) and (if 
R'(x, y) ~ R'(y, x) ~ R(x, x), then R(x, y) 
R ( y , x ) - R ( z ,  w)). (Note that R'  being con- 
nected, we cannot have R'(x, y ) ~ R ' ( y , x ) -  
_R(x, x).) Given the construction of R, and given 
that R'  satisfies reflexivity, connectedness and 
(6.7), it can be easily shown that R is a soft 
ordering. It is also clear that for all x, y e X, 
R'(x, y) N R(x, x) iff R(x, y) ~ R(y, x) and hence 

C(A) = {x e A I R(x, y) ~ R(y, x)} 

for a l l A e K .  [] 

Remark 6.16. Proposition 6.14 shows that if the 
agent has an unrestricted choice function and if 
he satisfies Assumption 6.10, then his choice 
behaviour can be explained in the simpler 
framework of exact orderings. Similarly, Propo- 
sition 6.15 shows that if the agent satisfies 
Assumption 6.11, then his choice behaviour can 
be explained in terms of an exact binary weak 
preference relation, though the exact binary 
weak preference relation may not necessarily be 
an ordering (note that in Proposition 6.15 we do 
not use the assumption of an unrestricted choice 
function). This, however, is not true in the case 
of Assumption 6.12 as the following example 
shows. 
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Example 6.17. Let X = {x, y, z } and let R be an 
SO such that 

R(x, x)  ~ n ( y ,  y)  ~ R(z ,  z)  ~ R(x,  x)  

> R(x,  y)  > R(y ,  x)  ~ R(x,  z )  ~ R(y ,  z)  

> R(z ,  y)  ~ R(z ,  x)  > _R(x, x). 

Let C be an unrestricted choice function 
such that C ( { x , y } ) =  {x}; C ( { y , z } ) =  {y}; 
C({x, z}) = {x}; and C ( X )  = {x, y}). Then the 
agent satisfies Assumption 6.12 but it can be 
easily checked that there does not exist any 
ESBR R' such that for all A • K ,  C(A)= 
{-~ e A [ R'(,~, 37) ~/~(,~, ~) for all 37 • A}. 

We now consider a specific interpretation of 
the agent's choice problem. We assume that the 
agent is a competitive consumer. 

ture minimization in the framework of soft 
orderings (see [5, pp. 67-71] for a discussion of 
this duality in the context of crisp preference 
relations). Secondly, in the same framework, we 
prove the basic 'substitution theorem' which 
shows that, if the price of some commodity falls 
(other prices remaining the same) and the 
consumer's nominal wealth is simultaneously 
adjusted so that in the new price-wealth 
situation he can just buy the commodity bundle 
he was buying in the original price-wealth 
situation, then he will not buy less of the 
commodity the price of which has fallen (see [22, 
Chap. 3]). 

Assumption 6.19 (Strict monotonicity). For all 
x, y e X ,  if x > y ,  then R ( x , y ) - R ( x , x )  and 
R(y ,  x)  ~ _R(x, x). 

Notation 6.18. Let n be the number com- 
modities. Let •+ and ~++ be, respectively, the 
set of all non-negative real numbers and the set 
of all positive real numbers. The price vectors 
will be denoted by p , p ' , . . . e ~ _ + ;  and the 
levels of the consumer's wealth will be denoted 
by W, W ' , . . .  • R++. The consumption set of 
the consumer is given by X = ~%. Given prices p 
and wealth W, the budget set of the consumer is 
denoted by 

A(p ,  W)  = {x e X  J p . x <~ W}.  

Let the consumer's choice function be C:K--> 
(2 x - {0}), where 

0 4= K ~_ {A c X I A = A ( p ,  W )  for some price 

vector p and some wealth W}. 

The consumer has a soft ordering R over X, 
defined with reference to a proper and complete 
SST (g2, q, ~ ) on X 2. 

How much of the standard theory of 
consumers' behaviour survives when we switch 
to the broader framework of soft orderings? This 
is a question of considerable interest. We 
investigate some aspects of this problem here. 
We concentrate on two fundamental, though 
elementary, results in the standard theory of 
consumers' choice. The first is the duality 
between preference maximization and expendi- 

Remark 6.20. Strict monotonicity implicitly 
assumes that all the commodities are desirable. 
If we assume that all the commodities are 
desirable, then, while the consumer may have a 
vague ranking of two commodity bundles one of 
which contains more of some commodity and 
less of some other commodity than the other, 
the consumers' ranking over two commodity 
bundles one of which is unambiguously bigger 
than the other is unlikely to be vague. 

Assumption 6.21 (Local nonsaturation). For 
every x e X, and every neighbourhood z of x, 
there exists y • T such that R(y, z) - /~(x,  x) and 
R(x, y)  ~ _R(x, x). 

Remark 6.22. Strict monotonicity implies local 
nonsaturation though the converse is not 
necessarily true. 

Assumption 6.23. For all A • K and all x, y • A,  
if R(x, y) ~ R(x,  x)  and R(y ,  x)  ~ _R(x, x),  then 
y ~ C ( A ) .  

Remark 6.24. Assumption 6.23 is a very weak 
assumption which is implied by each of (6.4), 
(6.5) and (6.6). Essentially, it says that the 
consumer does not choose a consumption 
bundle which is strictly less preferred, in the 
exact sense, than another available consumption 
bundle. 
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Proposition 6.25. Suppose the consumer satisfies 
Assumptions 6.21 and 6.23. Suppose for some 
price vector p and wealth W, and for some x • X,  
A(p,  W) • K and x • C(A(p,  W)). Then p • x <~ 
W<~p .y  for all y • X  such that R ( y , x ) >  
8(x,x). 

Proof. Suppose the hypothesis of the proposi- 
tion is satisfied, but suppose [ W > p  .y  and 
R(y, x) > _R(x, x) for some y • X]. Since W > 
p .y, by Assumption 6.21, there exists z e X 
such that 

mization in the corresponding sense. We 
proceed to these two propositions via Assump- 
tion 6.28 and Lemma 6.29. 

Assumption 6.28 (Continuity). For all (x, y ) •  
X 2 , 

{(z, w) • X 2 I R(z, w) ~ R(x, y)) 

and 

((z, w) • X 21R(x, y) ~ R(z,  w)} 

are both closed in X 2. 

W ~ p .  z (6.9) 
and 

R(z, y) ~ R(x, x) and R(y,  z) ~ _R(x, x). 

(6.10) 

Given R(y,  x) > R(x, x), by Proposition 6.6, we 
have R(z, x) ~ R(x, x) and R(x, z) ~ R(x, x). 
Given (6.9) and [ x e C ( A ( p ,  W))], this con- 
tradicts Assumption 6.23. Hence, p .y>-W. 
Since x • C(A(p,  W)), clearly, W ~>p • x. [] 

The following proposition follows as a 
corollary of Proposition 6.25. 

Proposition 6.26. Suppose the consumer satisfies 
Assumptions 6.21 and 6.23. Suppose for some 
price vector p and wealth W, and for some x • X, 
A(p,  W) • K and x • C(A(p,  W)). 

(1) Let (6.4) hold so that for some x*, y* e X ,  
we have R(x*, y*) > _R(x*, x*)) and 

C(A') = H I ( A  ', R ,  X*, y*) 

for all A ' •  K. Then p . x < - p . y  for all y • X 
such that R(y,  x) >~ R(x*, y*). 

(2) I f  (6.5) holds, then p . x < ~ p . y  for all 
y • X such that R(y,  x) >~ R(x, y). 

(3) If  (6.6) holds, then p .x<~p .y  for all 
y • X such that R(y,  x) >~ m((x} x A). 

Remark 6.27. Propositions 6.25 and 6.26 show 
that even when the consumer's preference 
ordering is soft, under suitable assumptions, 
preference maximization implies expenditure 
minimization in the appropriate sense. 

Propositions 6.30 and 6.31 below explore the 
implication of expenditure minimization, in 
some appropriate sense, for preference maxi- 

Lemma 6.29. Let the consumer satisfy Assump- 
tions 6.21 and 6.28. Let p be a given price vector, 
and let x • X  be such that for all y • X ,  if 
p . y < p . x  then R(x ,y)>_R(x,x) .  Let there 
exist z • X such that p • z < p • x. Then R(x, y) 
R(x, x) for all y e A(p,  p . x). 

Proof. Let the hypothesis of Lemma 6.29 be 
satisfied. We first prove that for all y • 
A(p,  p .  x), 

i f p . y < p ' x ,  t h e n R ( x , y ) - R ( x , x ) .  (6.11) 

If y e A ( p , p . x )  and p . y < p . x ,  then there 
exists e • X  such that e > y ,  and p . e < p . x .  
Since e > y ,  by Assumption 6.21, R ( e , y ) -  
/~(x, x) and R(y,  e) ~ R(x, x). However, given 
p . e < p . x ,  we must have R ( x , e ) > R ( x , x ) .  
Given [R(x, e) > R(x, x) and R(e, y) ~ R(x, x) 
and R(y,  e) ~ 8(x, x)], we have, by Proposition 
6.6, R(x, y) ~ [~(x, x). Noting that R(x, x) 
[~(x, x) (by the reflexivity of R) and that ~ is 
an ordering over X 2 x (R),  we have R(x, y) 
R(x, x). 

Now we show that for all y • A(p,  p • x), 

i f p . y = p . x ,  t h e n R ( x , y ) ~ R ( x , x ) .  (6.12) 

Suppose p . y  = p . x .  Then consider z such as 
referred to in the hypothesis of Lemma 6.29. 
Consider any y '  • [z, y[. Since p .y = p  • x and 
p . z < p . x ,  we have p . y ' < p . x  for all 
y ' • [ z , y [ ,  and hence, by (6.1), R(x ,y ' )  
R(x, x). Hence, by Assumption 6.28, R(x, y) 
R(x, x). 

Lemma 6.29 follows from (6.11), (6.12) and 
the reflexivity of R. [] 

Proposition 6.30. Let the consumer satisfy 
Assumptions 6.21 and 6.28. Let x, x*, x', y'  • X 
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be such that R(x' ,  y ' )  > _R(x', x') ,  R(x, x*) >~ 
R(x ' , y ' ) ,  and [for all y • X ,  if R(y,x*)>~ 
R(x',  y'),  then p • x <~p • y]. Suppose there exists 
z • X, such that p . z < p . x. Then 

x • HI(A(p,  p • x), R, x' ,  y'). 

Proof. Let the hypothesis of Proposition 6.30 be 
satisfied. Since [for all y • X, if R(y,  x*) >~ 
R(x ' , y ' ) ,  then p - x ~ < p . y ] ,  we have [for all 
y • X, if p • y < p  • x, then R(x' ,  y ' )  > R(y,  x*)], 
and hence [for all y ~ X ,  if p . y < p . x ,  then 
R(y, y) > R(y,  x*)]. By the connectedness of R, 
it follows that [for all y • X, if p • y < p • x, then 
R(x*, y) > _R(y, y) ~ _R(x, x)]. Noting R(x, x*) > 
_R(x', y ) -  _R(x, x), by max-rain transitivity, we 

have R(x, y) > _R(x, x) for all y • X such that 
p . y  <p  • x. By Lemma 6.29, it follows that for 
all y • A(p ,  p • x), R(x, y) ~ R(x, x). Hence 

x • HI(A(p,  p • x), R, x', y'). [] 

Proposition 6.31. Let the consumer satisfy 
Assumptions 6.21 and 6.28. Let x* • X, and let 
x • X be such that JR(x, x*) >~ R(x*, x)] and [for 
all y • X, if R(y ,  x*) >~ R(x*, y)], then p • x <~ 
p .y]. Let there exist z • X s u c h  thatp • z < p  .x. 
Then 

x • H2(A(p, p"  x), R). 

Proof. Let the hypothesis of Proposition 6.31 be 
satisfied. Since [R(x, x*)>~R(x*, x)], by the 
connectedness of R, we have R(x, x*) >~ _R(x, x). 
Since [for all y • X, if R(y,  x*) > R(x*, y)], then 
p . x < - p . y ] ,  it follows that for all y • X ,  if 
p • y < p  .x, then R(x*, y) > R(y,  x*). Hence, 
by the connectedness of R, for all y • X ,  if 
p . y < p . x ,  then R(x* ,y )>_R(x ,x ) .  Noting 
[R(x, x*) > _R(x, x)], by max-min transitivity of 
R, it follows that for all y • X ,  if p . y  < p . x ,  
then R(x, y) > _R(x, x). Then, by Lemma 6.29, it 
follows that R ( x , y ) - R ( x , x )  for all y •  
A(p,  p • x). Then clearly 

x • HZ(A(p, p .  x), R). [] 

Remark 6.32. Proposition 6.30 and 6.31 show 
that, if the consumer satisfies either (6.4) or 
(6.5), then expenditure minimization in an 
appropriate sense implies preference maximiza- 
tion. However, we have not been able to 

formulate and prove a corresponding proposition 
for (6.6). 

Our last result (Proposition 6.33) in this 
section shows that the 'substitution theorem' 
which is a basic result in the theory of 
consumers' behaviour based on crisp orderings, 
also holds in the more general framework of soft 
orderings. 

Proposition 6.33. Let the consumer satisfy 
Assumptions 6.21 and 6.23. Let x, x' • X, p, p' ,  
W and W' be such that 

A(p,  w) • K, A (p  ', W' )  • K, 

x • C(A(p, W)), x' • C(A(p', W')) 

and W' =p '  .x. Then ( p ' - p ) .  (x ' -x)<~O.  

Proof. Since x ' e  C(A(p ' ,  W') )  and W' = p '  .x,  
we have p '  • x ~> p '  • x ' ,  and hence 

p ' .  (x' - x) <~ 0. (6.13) 

Since x' • C(A(p ' ,  W' ) )  and x • A(p ' ,  w'), by 
Assumption 6.23 and connectedness of R, it 
follows that R(x' ,  x) > _R(x, x). Hence, given 
x • C(A(p,  W)), by Proposition 6.25, p • x '  ~> 
p • x. Therefore 

- p  • (x' - x) < 0. (6.14) 

From (6.13) and (6.14) it follows that 

( p ' - p ) . ( x ' - x ) < O .  [] 

7. Concluding remarks 

In this paper we have introduced the notion of 
soft sets, which constitutes an ordinal formula- 
tion of the notion of vague sets, as distiguished 
from the cardinal formulation in the traditional 
theory of fuzzy sets. We have explored the 
relation between our notion of soft sets and 
Goguen's [8] notion of L-sets. It has been shown 
that a close logical relation exists between the 
two concepts. We have also considered several 
applications of soft binary relations to the theory 
of vague preferences and rational choice in 
general and also to the specific, economic 
problem of consumers' behaviours in the 
presence of vague preferences. It is our belief 
that, in the context of many problems of interest 
to social scientists, the ordinal formulation 
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provides an intuitively more satisfactory method 
of modelling vagueness than the traditional 
cardinal formulation. It is also our belief that the 
ordinal version has many potential applications 
in the social sciences, especially in economics. 
The results in Section 6 of our paper constitute 
only a few examples of such applications. 
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